Heating Mars On The Cheap

Mars is fairly attractive as a potential future home for humanity. It’s solid, with firm land underfoot. It’s able to hang on to a little atmosphere, which is more than you can say about the moon. It’s even got a day/night cycle remarkably close to our own. The only problem is it’s too darn cold, and there’s not a lot of oxygen to breathe, either.

Terraforming is the concept of fixing problems like these on a planet-wide scale. Forget living in domes—let’s just make the whole thing habitable!

That’s a huge task, so much current work involves exploring just what we could achieve with today’s technology. In the case of Mars, [Casey Handmer] doesn’t have a plan to terraform the whole planet. But he does suggest we could potentially achieve significant warming of the Red Planet for $10 billion in just 10 years. Continue reading “Heating Mars On The Cheap”

This Air Particulate Sensor Can Also Check Your Pulse Rate

The MAX30105 is an optical sensor capable of a great many things. It can sense particulate matter in the air, or pick up the blinking of an eye. Or, you can use it as a rudimentary way to measure your heart rate and blood oxygen levels. It’s by no means a medical grade tool, but this build from [Taste The Code] is still quite impressive.

The MAX30105 contains red, green, and infrared LEDs, and a very sensitive light detector. The way it works is by turning on its different LEDs, and then carefully measuring what gets reflected back. In this way it can measure particles in the air,  such as smoke, which is actually what it was designed for originally. Or, if you press your finger up against it, it can measure the light coming back from your blood and determine its oxygenation level. By detecting the variation in the light over time, it’s possible to pick up your pulse, too.

Getting this data out of the sensor is remarkably easy. One need only hook it up to a suitable microcontroller like the ESP8266 and use the MAX3010X library to talk to it. [Taste The Code] did exactly that, and also hooked up a screen for displaying the captured data. Alternatively, if you want the raw data from the sensor, you can get that too.

It should be noted that this build was done for educational purposes only. You shouldn’t rely on a simple DIY device for gathering useful medical data; there are reasons the real gear is so expensive, after all. We’ve looked at this sensor before, too, not long after it first hit the market. Continue reading “This Air Particulate Sensor Can Also Check Your Pulse Rate”

The Lunar Odyssey: Moon Landings From The 1960s To Today’s Attempts

With the recent string of lunar landing attempts, it’s interesting to consider how much things have changed – or stayed the same – since the first soft landing attempts in the 1960s with the US Ranger and USSR Luna landers. During the 1950s the possibility of landing a spacecraft on the Moon’s surface was investigated and attempted by both the US and USSR. This resulted in a number of lunar lander missions in the 1960s, with the US’s Ranger 3 and 5 missing the Moon, Ranger 4 nearly missing it but instead crashing into the far side of the Moon, and eventually the USSR’s Luna 9 making the first touchdown on the lunar surface in 1966 after a string of USSR mission failures.

What’s perhaps most interesting was how these first US and USSR spacecraft managed to touch down, with Luna 9 opting to inflate a landing airbag and bounce until it came to a halt. This approach had doomed Luna 8, as its airbag got punctured during inflating, causing a hard crash. Meanwhile the US’s Surveyor 1 was the first US spacecraft to land on the Moon, opting to use a solid-fuel retrorocket to slow the craft down and three liquid-fueled vernier thrusters to prepare it for a drop down from 3.4 meters onto the lunar surface.

Now, nearly 60 years later, the landers we sent regularly make it to the lunar surface, but more often than not end up crashing or toppling over into awkward positions. How much have lunar landings really changed?

Continue reading “The Lunar Odyssey: Moon Landings From The 1960s To Today’s Attempts”

High Vacuum Hack Chat

Join us on Wednesday, March 6 at noon Pacific for the High Vacuum Hack Chat with Niklas from Advanced Tinkering!

To the casual observer, there’s not much that goes on in experimental physics that doesn’t require at least a partial vacuum. It makes sense when you think about it; our atmosphere is so thick and so loaded with water vapor and reactive oxygen that it just has to play havoc with experiments. Even when the goal is more applied than empirical, getting rid of all those pesky molecules is often the first step in getting good results.

But pulling a vacuum is rarely an easy task. Sure you can pump out some of the air, but that just makes the rest of the atmosphere try really hard to get back inside and ruin your day. It takes a lot of specialized equipment, a lot of precision-machined stainless steel fittings, and quite a bit of experience not only to pull a vacuum, but to then be able to work within it and do something useful.

join-hack-chatOne place where we’ve seen a lot of high-vacuum action is over on Advanced Tinkering on YouTube. The channel has a wealth of interesting experiments, many of which need a good vacuum to get going. To that end, channel owner Niklas has assembled a nice collection of vacuum gear, and we asked him to drop by the Hack Chat to talk about what he’s learned by embracing the suck.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, March 6 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

On The Merits Of A Solid-State Dehumidifier Filament Dry Box

How good are ion membrane dehumidifiers for keeping FDM filament dry and ready for printing? This is the question which [Stefan] at CNC Kitchen sought to answer in a recent video. Like many of us, he was inspired by a video which [Big Clive] made a while ago in which said dehumidifiers were demonstrated for keeping an enclosure free from moisture. Yet would they be able to tackle the much bigger drying job of one or more spools of filament? Thanks to some free samples sent by Rosahl, [Stefan] was able to start answering this question.

Performance of desiccants and dehumidifier element. (Credit CNC Kitchen)
Performance of desiccants and dehumidifier element. (Credit CNC Kitchen)

In the experiments, he used the smaller RS1 (€36.25 a piece) for a single spool container, and the larger MDL-3 (€169) with a Bambu Lab AMS multi-spool unit. Normally such an AMS has three big containers with silica desiccant in it that have to be regularly swapped out, but he modified one AMS to only have the big MDL-3 membrane to dehumidify. A second AMS was left with older silica in its containers, and a third got fresh silica, allowing for some benchmarking between the three units.

The results say a lot, with the initial empty AMS test showing the older silica desiccants topping out quickly and leaving the fresh silica and the membrane dehumidifier to go neck to neck. This is not the usual scenario in which you’d use these dehumidification methods of course, and the small-scale test with the RS1 showed that with a full filament spool in the box, humidity inside the container would only drop very gradually as more and more moisture replaced what was removed from the air. In particular the cardboard element of the spool being used was suspected of being one of the biggest sources of moisture.

Continue reading “On The Merits Of A Solid-State Dehumidifier Filament Dry Box”

Big Chemistry: Hydrofluoric Acid

For all of the semiconductor industry’s legendary reputation for cleanliness, the actual processes that go into making chips use some of the nastiest stuff imaginable. Silicon oxide is comes from nothing but boring old sand, and once it’s turned into ultrapure crystals and sliced into wafers, it still doesn’t do much. Making it into working circuits requires dopants like phosphorous and boron to give the silicon the proper semiconductor properties. But even then, a doped wafer doesn’t do much until an insulating layer of silicon dioxide is added and the unwanted bits are etched away. That’s a tall order, though; silicon dioxide is notoriously tough stuff, largely unreactive and therefore resistant to most chemicals. Only one substance will do the job: hydrofluoric acid, or HFA.

HFA has a bad reputation, and deservedly so, notwithstanding its somewhat overwrought treatment by Hollywood. It’s corrosive to just about everything, it’s extremely toxic, and if enough of it gets on your skin it’ll kill you slowly and leave you in agony the entire time. But it’s also absolutely necessary to make everything from pharmaceuticals to cookware, and it takes some big chemistry to do it safely and cheaply.

Continue reading “Big Chemistry: Hydrofluoric Acid”

Using Gallium Oxide As A Resistive Memory Element

Resistive random-access memory (RRAM) is a highly attractive form of RAM, as it promises low-power usage with stable long-term storage, even in the absence of external power. Finding the right materials to create an RRAM cell which incorporates these features is however not easy, but recently researchers have focused their efforts on gallium(III) oxide (Ga2O3), with a research article by [Li-Wen Wang] and colleagues in Nanomaterials describing a two-bit cell (MLC) based around an aluminium-gallium oxide-graphene oxide stack which they tested for an endurance of more than a hundred cycles.

Filament models of the Al/GO/Ga2O3/ITO/glass device. (Credit: Li-Wen Wang et al., 2023)
Filament models of the Al/GO/Ga2O3/ITO/glass device. (Credit: Li-Wen Wang et al., 2023)

The way gallium-oxide works in an RRAM cell is by forming a conductive filament formed by oxygen vacancies. These vacancies and the resulting conductive path are controlled by an externally applied current via the top (Al) and bottom (ITO) electrodes, with the graphene-oxide (GO) layer acting as a source of oxygen ions.

In related research, [Zhengchun Yang] and colleagues described in a 2020 article in Ceramics International how they constructed a device consisting out of gallium(III) oxide RRAM data storage with a piezoelectric ceramic element that served both as pressure sensor and power supply. The current generated by the piezo element is used to power the memory device and record measurements.

Then there is the somewhat more wild ‘FlexRAM’ idea pitched by [Ruizhi Yuan] and colleagues in Advanced Materials who describe how they created a device consisting out of flexible polymer called ‘EcoFlex’ with pockets in it for a ‘liquid gallium-based metal’ to create a flexible memory device. At millimeter-sized structures it’s hard to see practical applications for this technology, even if the associated PR article in IEEE Spectrum goes pretty hard on breathless speculation.