Agilent LCR Meter Teardown

Since 1999, one of the more popular manufacturers of test equipment has been Agilent, the spun-off former instrument division of Hewlett-Packard. From simple multimeters to fully-equipped oscilloscopes, they have been covering every corner of this particular market. And, with the help of [Kerry Wong] and his teardown of an Agilent LCR meter, we can also see that they’ve been making consistent upgrades to their equipment as well.

The particular meter that [Kerry] took apart was an Agilent U1731B, a capable LCR (inductance, capacitance, resistance) meter. He had needed one for himself and noted that while they’re expensive when new, they can be found at a bargain used, but that means dealing with older versions of hardware. For example, his meter uses an 8-bit ADC while the more recent U1733 series uses a 24-bit ADC. The other quality of this meter that [Kerry] made special note of was how densely populated the circuit board is, presumably to save on the design of a VLSI circuit.

While we don’t claim to stump for Agilent in any way, it’s good to know that newer releases of their equipment actually have improved hardware and aren’t just rebadged or firmware-upgraded versions of old hardware with a bigger price tag attached. Also, there wasn’t really any goal that [Kerry] had in mind besides sheer curiosity and a willingness to dive deep into electronics details, as those familiar with his other projects know already.

Adding Vector Art To Your Eagle Boards

Badgelife and the rise of artistic PCBs are pushing the envelope of what can be done with printed circuit boards. And if you’re doing PCB art, you really want to do it with vectors. This is a surprisingly hard problem, because very few software tools can actually do DXFs and SVGs properly. Never fear, because [TallDarknWeirdo] has the solution for you. It’s in Eagle, and it uses Illustrator and Inkscape, but then again this is a hard problem.

The demonstration article for this example is just a Christmas tree. It’s somewhat topical green soldermask is standard, FR4 looks like wood, and silver and gold and all that. [TallDarknWeirdo] first split up this vector art into its component pieces — soldermask, bare FR4, and copper — then imported it into Inkscape to make the SVGs. This was then thrown into an online tool that creates something Eagle can understand. The results are better than importing bitmaps, resulting in much cleaner lines in the finished board.

Quick word of warning before we get into this, though: if you’re reading this in 2019 or later, this info might be out of date. Autodesk should be releasing a vector import utility for Eagle shortly, and we’re going to be taking a deep dive into this tool and complaining until it works. Until then, this is the best way to get vector art into Eagle.

Oh, and [TallDarknWeirdo] is none other than [Bradley Gawthrop], who’s put more time in crimping wires than anyone else we know.

The Best Laptop Gets Even Better

The ThinkPad is the greatest laptop ever created. It doesn’t come in rose gold, it comes in black. It doesn’t have a weird screen instead of an escape key. For less than half the price of a MacBook, you can have a capable laptop that will somehow fit three drives inside. It’s madness, but it’s still not the perfect tool for hacking. To get there, you’re going to need to load that thing up with an independent Linux system, and maybe a solderless breadboard. That’s what [ollie242] is doing with his ThinkPad, and the results are the perfect addition to the perfect laptop.

This build is really just a 3D printed drive caddy for the Thinkpad UltraBay, the modular standard that allows you to add a CD drive, SATA drive, or even a serial and parallel port to your laptop. [ollie242] is modeling this off the CD drive taken from a ThinkPad T420, so we’re looking at a ‘Serial Ultrabay Enhanced’ version of this standard, which is compatible with a T430, which is still the best laptop you can possibly buy.

Inside this 3D printed drive caddy is a Raspberry Pi Zero W, powered by the ThinkPad through the internal SATA connector. The Pi Zero has right-angle headers attached, giving access to the GPIO pins from the outside. Just to add a little flair, [ollie242] added an OLED display to show the IP address, the CPU load, and the memory availability of the Pi.

This is a great project, if only because no one has any use for a CD drive anymore. Since these UltraBay drives are huge, it would be a simple matter to add a much more powerful computer to the drive like the recently announced Raspberry Pi 3 Model A+. There are — or at least there should be — some interesting internal connections on that UltraBay port, and it’s not inconceivable this Raspberry Pi UltraBay could be used as a coprocessor of sorts for its host laptop.

Electrolysis Tank Removes Rust

If you have something rusty, you can get a wire brush and a lot of elbow grease. Or you can let electricity do the work for you in an electrolysis tank. [Miller’s Planet] shows you how to build such a tank, but even better, he explains why it works in a very detailed way.

The tank uses a sodium carbonate electrolyte — just water and washing powder. In the reaction, free electrons from the electrolyte displace the oxygen from the rusted metal piece. A glass container, a steel rod, and a power supply make up the rest.

Continue reading “Electrolysis Tank Removes Rust”

Put That DLP Printer To Use Making PCBs

Now that these DLP printers are cheaper and more widely available, we’re starting to see hackers poking around the edge of the envelope to see what else the machines are capable of. [Electronoobs] recently got his hands on a couple of these printers, and thought he would do some experiments with using them for PCB production.

Rather than extruding molten plastic, these printers use light to cure resin layer-by-layer. In theory if the printer is good enough to cure the light-activated resin for a high resolution print, it should be able to do much the same thing with photosensitive PCBs.

Unfortunately, getting an STL out of a PCB design program takes a few intermediary steps. In the video after the break, [Electronoobs] shows his workflow that takes his design from EasyADA and turning it into a three dimensional object the DLP printer will understand. He does this with Blender and it looks pretty straightforward, but in the past we’ve seen people do similar tricks with Inkscape if that’s more your style.

Once you’ve grafted another dimension onto your PCB design, you may need to scale it to the appropriate size. [Electronoobs] notes that his STL for a 60 mm wide PCB came out of Blender as less than 2 mm wide, so you might need to break out the dreaded mathematics to find the appropriate scale value. Once the dimensions look good, you can load this file up into the printer as you would any normal print.

On the printer side of things, [Electronoobs] manually laminates UV photoresist film onto some copper clad boards with an iron, but you could skip this step and buy pre-sensitized boards as well. In any event, you drop the board where the UV resin normally goes, press the print button, and wait about ten minutes. That should give it enough time to expose the board, and you then proceed with the normal washing and acid bath process that hackers have been doing since time immemorial.

As [Electronoobs] shows, the results are quite impressive. While this still won’t make it any easier for you to do double-sided PCBs in the home lab, it looks like a very compelling method for producing even SMD boards with relative ease. This isn’t the first time somebody has tried using a DLP printer to run off some PCBs, but now that the technology has matured a bit it looks like it’s finally becoming practical.

Continue reading “Put That DLP Printer To Use Making PCBs”

Energy Sipping Neodymium Sphere Keeps On Spinning

At this point we’re sure you are aware, but around these parts we don’t deduct points for projects which we can’t immediately see a practical application for. We don’t make it our business to say what is and isn’t worth your time as an individual hacker. If you got a kick out of it, great. Learned something? Even better. If you did both of those things and took the time to document it, well that’s precisely the business we’re in.

So when [Science Toolbar] sent in this project which documents the construction of an exceptionally energy efficient spinning neodymium sphere, we knew it was our kind of thing. In the documentation it’s referred to as a motor, though it doesn’t appear to have the torque to do any useful work. But still, if it can spin continuously off of the power provided by a calculator-style photovoltaic cell, it’s still a neat trick.

But how does it work? It starts by cracking open one of those little solar powered toys; the ones that wave or dance around as soon as any light hits the panel in their base. As [Science Toolbar] explains, inside these seemingly magical little gadgets is a capacitor and the classic black epoxy blob that contains an oscillator circuit. A charge is built up in the capacitor and dumped into a coil at roughly 1 Hz, which provides just enough of a push to get the mechanism going.

In the video after the break, [Science Toolbar] demonstrates how you can take those internals and pair it with a much larger coil. Rather than prompting a little sunflower or hula girl to do its thing, the coil in this version provides the motive force for getting the neodymium sphere spinning. To help things along, they’re even using a junk box zero friction magnetic bearing made up of a wood screw and a magnetized screwdriver tip.

It’s an interesting example of how a tiny charge can be built up over time, and with a nice enough enclosure this will make for a pretty cool desk toy. We’ve previously seen teardowns of similar toys, which revealed a surprising amount of complexity inside that little epoxy blob. No word on whether or not the version [Science Toolbar] cannibalized was quite so clever, however.

Continue reading “Energy Sipping Neodymium Sphere Keeps On Spinning”

Look Like A Movie Hacker

On the old original Star Trek series, they bought some futuristic salt and pepper shakers to use on an episode. The problem is they didn’t look like salt and pepper shakers, so they used normal ones instead and turned the strange-looking ones into Dr. McCoy’s medical instruments. This demonstrates the value of looking like what you claim to be. So sure, you are a super skillful hacker, but if you are sitting in front of a normal looking computer desktop, how can anyone tell? After all, in the movies, hackers use exotic flashy user interfaces, right? Now thanks to eDEX-UI, you can look like a movie hacker if you use Windows, Linux, or the Mac.

As you might expect, the program isn’t very efficient or practical, but it does actually do something. In addition to a load of system information about the CPU and network, there’s a shell, a file manager, and an onscreen keyboard, too. The app uses Electron and — on Linux — AppImage, but for a toy program like this, that may not be a problem.

Continue reading “Look Like A Movie Hacker”