Frankensteined X4 Quad Is Brought Back To Life

x4 quadcopter wood frame

As kids we’ve all let a friend use a toy only to have it returned broken. That was such a bummer! At least that was years ago though…. well not for [Tom]. He had a Hubsan X4 mini quadcopter that he had crashed into all sorts of things. The little quad held up good against all of the beatings so [Tom] didn’t think too much about letting his pal take it for a test drive. Thirty seconds later, several separate pieces of the quad were laying in the dirt.

A new X4 was ordered but there was some time to kill waiting for it to show up. Since the electronics seemed to be intact and only the frame was broken [Tom] decided to try his hand at making a new frame. Keeping costs under control is an important part of any project and this one was no different. The frame would be made of cheap and rigid 5mm plywood. The only potential problem would be the weight. [Tom] cut out a piece of the plywood and weighed it, then measured the volume and calculated the density of the wood. The wood’s density was used to estimate the final weight of new plywood frame designs and shapes. This worked so well that the newly built quad only weighed more than the original by 0.31 grams, less than 1% increase in the total weight!

Continue reading “Frankensteined X4 Quad Is Brought Back To Life”

Dr. Frankenstein’s Wireless Xbox One Steering Wheel

Buy an Xbox One controller and hack it immediately? That’s exactly what [tEEonE] did so he could merge it with a Simraceway SRW-S1 steering wheel. He loves racing games and was psyched to play Forza 5. He already had the steering wheel, but it’s strictly a PC peripheral. [tEEonE] wanted the wheel to control the steering, gas, and brakes and found both the XB1 controller and the SRW-S1 well-suited to the hack.

For steering, [tEEonE] substituted the SRW-S1’s accelerometer for the XB1’s left joystick pot. He connected the X and Y to analog pins on an Arduino Pro. Then he mapped the rotation angles to voltage levels using a DAC and wired that to the XB1 joystick output. The XB1 controller uses Hall effect sensors and magnets on the triggers to control the gas and brake. He removed these and wired the SRW-S1 paddles to their outputs and the XB1 controller is none the wiser.

He also rigged up a 3-point control system to control the sensitivity and calibrate the angles: a button to toggle through menu items and two touch modules to increment and decrement the value. These he wired up to a feedback interface made by reusing a 15-LED strip from the SRW-S1. Finally, he had space left inside the housing for the XB1’s big rumble motors and was able to attach the small motors to the gas and brake paddles with the help of some 3-D printed attachments. Check out this awesome hack in action after the break.

 

Continue reading “Dr. Frankenstein’s Wireless Xbox One Steering Wheel”

Frankenstein, The Open Source Engine Control Unit

The Engine Control Unit is a vital part of every car made in the last 40 years or so, but unlike just about every other electronic device, open source solutions just don’t exist. [Andrey] is trying to change that with rusEfi, a project that hopes to bring together hardware, software, and engines in one easy to use package. He’s even designed Frankenstein, a full ECU ‘shield’ for the STM32F4 Discovery dev board.

This isn’t the first time we’ve seen [Andrey]’s adventures in building an ECU. An earlier board was also powered by the STM32F4 Discovery, and he actually drove his 96 Ford Aspire around using this homebrew ECU. It was only firing on two cylinders, but that was only a loose solder connection.

Of course building an ECU from scratch is worthless without the proper firmware that balances and engine’s fuel economy and performance. This sort of testing must be done empirically and [Andrey] has a Kickstarter going for the development of this firmware and some dyno time. No rewards, but it’s worth chipping in a buck or two. I did.

Videos below.

Continue reading “Frankenstein, The Open Source Engine Control Unit”

Frankenstein, An All-tube Home Theater Amplifier

amp

Here’s an exercise in excess if we’ve ever seen one. While working on his undergrad at Michigan State, [Gregory] thought it would be a great idea to build an all-tube home theater system. He calls his seven-foot tall rack of amplifiers ‘Frankenstein,’ and we’ve got to agree this build is an impressive monstrosity of engineering prowess.

[Gregory]’s Frankenstein is a complete 5.1 home theater system. In the interests of sanity, the majority of the equipment in the rack is off-the-shelf gear including a CD player, surround sound processor, and a beautiful McIntosh solid state preamp. The power amps, though, are where this build really shines.

For the sub, [Gregory] built a wonderful monoblock tube amp, able to push nearly 300 watts into a subwoofer. The other channels for this home theater system are amplified with a huge four channel tube amp providing 480 watts per channel. In total, there are 23 tubes in [Gregory]’s amplifier system, enough to consume 20 amps of filament current.

You can check out [Gregory]’s demo video of his system after the break.

Continue reading “Frankenstein, An All-tube Home Theater Amplifier”

Frankenstein’s Lawnmower

[phantompinecone] has an electric mower that worked great for about 4 seasons, and then the battery started to die. A replacement was installed but it started being a pain after the first season. Since the battery was brand new (and probably costly too) there must be something else.

Checking the brushes, which were fine, the next logical place was the switch.These mowers are just a battery, motor, and switch. Yanking it apart there was indeed a problem, they were chewed up and corroded, not allowing full electrical contact. So [phantompinecone] replaced the simple mechanical switch with a MOSFET.

Electrically there is an IRF1405 MOSFET, some resistors to pull signals around and a couple diodes to A) keep the back emf from the motor in check, and B) drop the voltage going into the fet from 24volts to 12. Problem solved, and the motor should not have anymore trouble caused by a junked up switch.

Protei: Articulated, Backward Sailing Robots Clean Oil Spills

The Protei project aims to develop a robotic solution for oil-spill cleanup. [Cesar Harada] quit what he calls his dream job at MIT to work toward a solution to the ecological disasters that are oil spills. He had previously been working on Seaswarm, a swarm of robots that use conveyor belts of absorbent material to leech oil from seawater. But Protei doesn’t use legions of drones. It aims to use better design to improve the effectiveness of a small number of units.

The whole idea is well described in the video after the break. If a long trailing boom of absorbent material is towed in a serpentine pattern perpendicular to the flow, starting down current and moving upward, it can be quite effective at halting the spread of crude. Initial experiments have shown that a robotic vessel can do this efficiently with just a few improvements. First, to counteract the drag of the tail the rudder of the boat was moved to the bow. Secondly, the hull has been articulated as you can see above. This allows the robot to better utilize wind power to sail, making turns without losing the push of the wind.

The project is raising money through Kickstart as an open hardware project. Let’s hope this becomes a cheap and effective way to fix our costly drilling mishaps. Continue reading “Protei: Articulated, Backward Sailing Robots Clean Oil Spills”

Robot Einstein Could Save Humans From Killbot Destruction

einstein-robot

Earlier this year we saw the Einstein robot that is being developed to facilitate human facial emotions in robots. [David Hanson], the man in charge of this project, has given a TED talk on his work that includes a show-and-tell of his most recent progress. We’ve embedded the video after the break for your enjoyment.

The Einstein robot (head only in this video) shows off the ability to recognize and mimic the facial emotions of the person in front of it. There is also video of a Bladerunner-esque robot looking around a room, recognizing and remembering the faces of the people it sees. [David] makes a very interesting proclamation: he’s trying to teach robots empathy. He feels that there is a mountain of R&D money going into robots that can kill and not much for those that can sense human emotions. His hope is that if we can teach empathy, we might not be annihilated when robots become smarter than us.

That’s not such a bad idea. Any way you look at it, this talk is interesting and we wish the five-minute offering was five-times as long. But [Mr. Hanson’s] facial hair alone is worth clicking through to see.

Continue reading “Robot Einstein Could Save Humans From Killbot Destruction”