Leg Mounted Beer Bottles For Underwater Propulsion

Sitting on the beach, finishing off a beer one day, [Rulof] realized that if he put a motor in the beer bottle with a propeller at the bottle’s mouth, he could attach the result to his leg and use it to propel himself through the water. Even without the added bonus of the beautiful Mediterranean waters through which he propels himself, this is one hack we all wish we’d thought of.

These particular beer bottles were aluminum, making cutting them open to put the motor inside easy to do using his angle grinder. And [Rulof] made good use of that grinder because not only did he use it to round out parts of the motor mounting bracket and to cut a piston housing, he also used the grinder to cut up some old sneakers on which he mounted the bottles.

You might wonder where the pistons come into play. He didn’t actually use the whole pistons but just a part of their housing and the shaft that extends out of them. That’s because where the shaft emerges from the housing has a water tight seal. And as you can see from the video below, the seal works well in the shallow waters in which he swims.

Continue reading “Leg Mounted Beer Bottles For Underwater Propulsion”

Hacklet 98 – Underwater ROVs

A few motors, propellers, a camera, maybe a wire tether, and some waterproof electronics. Throw it all together and baby you’ve got an underwater Remotely Operated Vehicle (ROV) cooking! It all sounds simple on the surface, but underwater ROVs are a tough challenge. We’ve all seen deep-sea ROVs searching the wreck of the Titanic, or working to stop the flow of oil below the Deepwater Horizon. Plenty of hackers, makers, and engineers have been inspired to build their own underwater ROVs. This week on the Hacklet, we’re spotlighting at some of the best ROV projects on Hackaday.io!

borgcubeWe start with [Tim Wilkinson] and BorgCube ROV. [Tim] has jumped into the world of underwater ROVs with both feet. BorgCube is designed to operate in the unforgiving salt waters of the Pacific Ocean. This ROV can see in stereo, as [Tim] plans to use a head mounted VR display like the Oculus Rift to control it. [Tim] wanted to use a Raspberry Pi as the brains of this robot. Since the Pi Compute module can handle two cameras, it was a natural fit. The electronic speed controls are all low-cost Hobby King R/C car units. [Tim] created a custom circuit board to hold all 12 ESCs. This modular design allows individual controllers to be swapped out if one meets an untimely doom. BorgCube is just getting wet, but with 37 project logs and counting, we’re sure [Tim] will keep us posted on all the latest action!

 

lunaNext up is [MrCullDog] with Luna I ROV. Inspired by a professional underwater ROV, [MrCullDog] decided to build a deep diving unmanned vehicle of his very own. Like BorgCube above, many of Luna I’s motors and drive components come from radio controlled hobby electronics. [MrCullDog] is bringing some 3D printed parts into the mix as well. He’s already shown off some incredibly well modeled and printed thruster mounts and ducts. The brains of this robot will be an Arduino. Control is via wired Ethernet tether. [MrCullDog] is just getting started on this project, so click the follow button to see updates in your Hackaday.io Feed.

cavepearlNext up is [Edward Mallon] with The Cave Pearl Project. Not every underwater system needs motors – or even a human watching over it. The Cave Pearl Project is a series of long duration underwater data loggers which measure sea conditions like temperature and water flow. [Edward’s] goal is to have a device which can run for a year on just three AA batteries. An Arduino Pro Mini captures data from the sensors, time stamps it, and stores it to a micro SD card. If the PVC pipe enclosure keeps everything dry, the data will be waiting for [Edward] to collect months later. [Edward] isn’t just testing in a swimming pool, he’s been refining his designs in open water for a couple of years now.

 

If you want to see more under (and above) water projects, check out our updated waterborne projects list! If I missed your project, don’t be shy! Just drop me a message on Hackaday.io. That’s it for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

A Compact Underwater Vehicle: The Nanoseeker

The Nanoseeker is a compact underwater vehicle in a torpedo-like form factor. [John] designed the Nanoseeker as completely enclosed vehicle: both the thruster and the control fins are all housed within the diameter of the tube. The thruster is ducted with vents on the sides and control fins integrated into the back of the duct assembly.

[John] designed a compact PCB to drive the vehicle, which includes an STM32F4 alongside several sensors. An MPU-9150 provides IMU functionality and two dual motor driver ICs from TI control the throttle and the control fins. [John] also added a Bluetooth radio for remote control functionality. For those who want a closer look, an image of the schematic is up on his blog.

The board is running MicroPython, which is a small Python implementation optimized for microcontrollers. Although [John]’s hardware platform looks great, he’s still getting started on his software. We look forward to seeing how his project develops, as his project is one of the smallest underwater vehicles we’ve seen.

[via Dangerous Prototypes]

Twitching Fish Plays Pokemon Underwater

fishypokemon

Over a matter of a few days, thousands of people were simultaneously watching this fish named [Grayson Hopper] float around a bowl of water as a webcam recorded its every move and translated the directions it took into a working gameplay of Pokemon Red. Each section of the tank was split into partitions, with each section acting like a button. So when the fish swam over a specific area, the main Pokemon character [Ash] was told where to go.

It was created during a hackNY hackathon within 24 hours when the fish started its journey in to the world of Pokemon. Already, a subreddit popped up documenting the adventure. Amazingly enough, [Grayson] chose Charmander as its starting Pokemon and has defeated its rival Squirtle.

This project was great for watching hours on end, especially at work, as the cute little fish went about its life unaware that it is becoming a popular internet star.

Check out the link above to stream the video. There is even a chat bar on the side, which allows anyone to jump into the fishy conversation. If the fish looks dead though, it’s probably just sleeping.

[Thanks for the tip Bailey!]

Also, Pokemon was reborn some vintage hardware recently which allows the player to game via the web. Check that out too!

Underwater GoPro Hero 2 Sees Clearly Again

go pro hack

GoPros are great action cameras for snagging photos and videos places where you can’t normally bring real camera gear. The problem is, even with the waterproof GoPro case for the Hero 2 — the underwater videos tend to be blurry and out of focus. Unsatisfied with his videos, [Mitchell] decided to make his own lens for the case!

The waterproof case has a removable concave lens, but for whatever reason it’s not very good underwater. Lucky for [Mitchell], it’s quite easily removed with 6 screws, revealing a nice thick gasket and the lens. Instead of trying to go fancy with some glass element from a broken camera, he’s just taken some 1/4″ plexiglass and cut out a piece to fit the case. It was a bit too thick for the original configuration, so he’s actually flipped the retaining ring upside down to space the lens away from the actual camera. A bunch of silicone later and the case is waterproof again with a new lens!

The resulting footage with the new lens looks awesome underwater — take a peek after the break.

Continue reading “Underwater GoPro Hero 2 Sees Clearly Again”

Google Science Fair Finalist Explains Squid-inspired Underwater Propulsion

google-sciencefair-finalist-squid-propulsion

Meet [Alex Spiride]. He’s one of the fifteen finalists of the 2013 Google Science Fair. A native of Plano, Texas, [Alex] entered his squid-inspired underwater propulsion system in the 13-14 year old category.

The red cylinder shown in the image inlay is his test rig. It is covered well on his project site linked above. You just need to click around the different pages using the navigation tiles in the upper right to get the whole picture. The propulsion module uses water sprayed out the nozzle to push the enclosure forward. The hull is made of PVC, with a bladder inside which is connected to the nozzle. The bladder is full of water, but the cavity between it and the hull is full of air. Notice the plastic hose which is used to inject pressurized air, squeezing the bladder to propel the water out the nozzle. Pretty neat huh?

We think [Alex’s] work stands on its own. But we can’t help thinking what the next iteration could look like. We wonder what would happen if you wrapped that bladder in muscle wire? Would it be strong enough to squeeze the bladder?

You can see all fifteen finalists at the GSF announcement page. Just don’t be surprised if you see some of those other projects on our front page in the coming days.

Continue reading “Google Science Fair Finalist Explains Squid-inspired Underwater Propulsion”

‘Vortex-drive’ For Underwater ROV Propulsion

This is [Lee von Kraus’] new experimental propulsion system for an underwater ROV. He developed the concept when considering how one might adapt the Bristlebot, which uses vibration to shimmy across a solid surface, for use under water.

As with its dry-land relative, this technique uses a tiny pager motor. The device is designed to vibrate when the motor spins, thanks to an off-center weight attached to the spindle. [Lee’s] first experiment was to shove the motor in a centrifuge tube and give it an underwater whirl. He could see waves emanating from the motor and travelling outward, but the thing didn’t go anywhere. What he needed were some toothbrush bristles. He started thinking about how those bristles actually work. They allow the device to move in one direction more easily than in another. The aquatic equivalent of this is an angled platform that has more drag in one direction. He grabbed a bendy straw, using the flexible portion to provide the needed surface.

Check out the demo video after the break. He hasn’t got it connected to a vessel, but there is definitely movement.

Continue reading “‘Vortex-drive’ For Underwater ROV Propulsion”