Raptor DID. Photo by Matt Mechtley.

How Jurassic Park’s Dinosaur Input Device Bridged The Stop-Motion And CGI Worlds

In a double-blast from the past, [Ian Failes]’ 2018 interview with [Phil Tippett] and others who worked on Jurassic Park is a great look at how the dinosaurs in this 1993 blockbuster movie came to be. Originally conceived as stop-motion animatronics with some motion blurring applied using a method called go-motion, a large team of puppeteers was actively working to make turning the book into a movie when [Steven Spielberg] decided to go in a different direction after seeing a computer-generated Tyrannosaurus rex test made by Industrial Light and Magic (ILM).

Naturally, this left [Phil Tippett] and his crew rather flabbergasted, leading to a range of puppeteering-related extinction jokes. Of course, it was the early 90s, with computer-generated imagery (CGI) animators being still very scarce. This led to an interesting hybrid solution where [Tippett]’s team were put in charge of the dinosaur motion using a custom gadget called the Dinosaur Input Device (DID). This effectively was like a stop-motion puppet, but tricked out with motion capture sensors.

This way the puppeteers could provide motion data for the CG dinosaur using their stop-motion skills, albeit with the computer handling a lot of interpolation. Meanwhile ILM could handle the integration and sprucing up of the final result using their existing pool of artists. As a bridge between the old and new, DIDs provided the means for both puppeteers and CGI artists to cooperate, creating the first major CGI production that holds up to today.

Even if DIDs went the way of the non-avian dinosaurs, their legacy will forever leave their dino-sized footprints on the movie industry.

Thanks to [Aaron] for the tip.


Top image: Raptor DID. Photo by Matt Mechtley.

Pulling Apart A Premium WebCam

Over at EDN, [Brian Dipert] has been tearing down web cameras. A few months ago, he broke into a bargain basement camera. This time, he’s looking into a premium unit. Although we have to admit from some of what he reports, we are a little surprised at some of the corners cut. For example, it’s a 4K camera that doesn’t quite provide a 4K image. Despite a Sony CMOS sensor, [Brian] found the low-light performance to be poor. However, it does carry a much larger price tag than the previous camera examined.

The interesting part is about half way down the page when he tries to open the unit up. It seems like it is getting harder and harder to get into things and this camera was no exception. The device finally gives up. Inside is a relatively unremarkable board with a host of unknown ICs. One interesting item is a gyro chip that determines if the camera is upside down.

[Brian] managed to get the camera back together with no harm. It is interesting to compare it to the $15 camera he took apart earlier.

If you want maximum cred, do your video calls with a Game Boy camera. Or, at least, add your own lens to a webcam.

Does Solar Energy Make Us Vulnerable?

Here’s a hypothetical situation. You decide to build your own steam generator plant and connect it to the electric grid. No matter where you live, you’d probably have to meet a ton of requirements from whoever controls your electric power, almost surely backed by your government. Yet, according to a recent post by [Bert], a version of this is going on in Europe and, probably, in many more places: unregulated solar power inverters driving the grid.

If you have just a few solar panels hanging around, that probably isn’t a problem. But there are a sizeable number of panels feeding power — and that number seems to grow daily — having control of the inverters could potentially allow you to limit the grid’s capacity or — if the inverters allowed it — possibly take the grid down by feeding power incorrectly back into the grid.

Continue reading “Does Solar Energy Make Us Vulnerable?”

WOW! It Wasn’t Aliens After All!

There may not be many radio astronomy printouts that have achieved universal fame, but the one from Ohio State University’s Big Ear telescope upon which astronomer [Jerry R. Ehman] wrote “WOW!” is definitely one of them. It showed an intense one-off burst that defied attempts to find others like it, prompting those who want to believe to speculate that it might have been the product of an extraterrestrial civilization. Sadly for them the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo has provided an explanation by examining historical data from the Arecibo telescope.

The radio signal in question lay on the hydrogen line frequency at 1420 MHz, and by looking at weaker emissions from cold hydrogen clouds they suggest that the WOW! signal may have come from a very unusual stimulation of one of these clouds. A magnetar is a type of neutron star which can create an intense magnetic field, and their suggestion is that Big Ear was in the lucky position of being in the right place at the right time to see one of these through a hydrogen cloud. The field would excite the hydrogen atoms to maser-like emission of radiation, leading to the unexpected blip on that printout.

There’s a question as to whether speculation about aliens is helpful to the cause of science, but in answer to that we’d like to remind readers that we wouldn’t be talking about magnetars now without it, and that the WOW! signal was in fact part of an early SETI experiment. Better keep on searching then!

Meanwhile readers with long memories will recollect us looking at the WOW! signal before.

Are You Using Your Calipers Wrong?

It used to be that calipers were not a common item to have in an electronics lab. However, smaller parts, the widespread use of 3D printers and machining tools, and — frankly — cheap imported calipers have made them as commonplace as an ordinary ruler in most shops. But are you using yours correctly? [James Gatlin] wasn’t and he wants to show you what he learned about using them correctly.

The video that you can see below covers digital and vernier calipers. You might think digital calipers are more accurate, in practice, they are surprisingly accurate, although the digital units are easier to read.

Continue reading “Are You Using Your Calipers Wrong?”

Pulling Hydrogen Out Of The Water

In theory, water and electric current will cause electrolysis and produce oxygen and hydrogen as the water breaks apart. In practice, doing it well can be tricky. [Relic] shows an efficient way to produce an electrolysis cell using a few plastic peanut butter jars and some hardware.

The only tricky point is that you need hardware made of steel and not zinc or other materials. Well, that and the fact that the gasses you produce are relatively dangerous.

Continue reading “Pulling Hydrogen Out Of The Water”

Remapping HID For Fun And… Well Fun

If you want to remap some mouse or keyboard keys, and you use Linux, it is easy. If you use Windows or another operating system, you can probably do that without too much trouble. But what if you use all of them? Or what if you don’t have access to the computer in question? Thanks to [jfedor2], you can reach for a Raspberry Pi Pico and make this handy key-and-mouse remapping hardware dongle.

Continue reading “Remapping HID For Fun And… Well Fun”