Supercon 2022: Aedan Cullen Is Creating An AR System To Beat The Big Boys

There’s something very tantalizing about an augmented reality (AR) overlay that can provide information in daily life without having to glance at a smartphone display, even if it’s just for that sci-fi vibe. Creating a system that is both practical and useful is however far from easy, which is where Aedan Cullen‘s attempt at creating what he terms a ‘practical augmented reality device’.

In terms of requirements, this device would need to have a visual resolution comparable to that of a smartphone (50 pixels/degree) and with a comparable field of view (20 degrees diagonal). User input would need to be as versatile as a touchscreen, but ‘faster’, along with a battery life of at least 8 hours, and all of this in a package weighing less than 50 grams.

Continue reading “Supercon 2022: Aedan Cullen Is Creating An AR System To Beat The Big Boys”

Playing 78 RPM Shellac Records: It’s Not Just About Speed

What is the difference between 78, 45, and 33 RPM records? Obviously most people would say the speed, which of course is true to a degree. But as [Techmoan] covers in a recent video, there’s a whole lot more to the playback of 78 RPM records. Especially the older type without so-called ‘microgrooves’. Even if you have a record player that can do 78 RPM speeds, you may have noticed that the sound is poor, with a lot of clicking and popping.

The primary reason for this is that on an average 78 RPM record, the groove containing the sound pattern is 3 mil (thousandth of an inch) wide, whereas the grooves on microgroove and 33/45 RPM records is a mere 1 mil wide. This difference translates into the stylus tip, which is comically undersized for the 3 mil grooves and ends up dragging somewhere in the very bottom of the groove, missing entirely out on the patterns etched higher up on the sides. This is why in the past styluses would often come in the flip-style version, as pictured above.

It’s also possible to purchase the mono, 3 mil styluses today from Audio-Technica and other well-known brands, requiring only to switch the stylus cartridge between playing sessions with different groove sizes. As [Techmoan] demonstrates in the video, the difference between a too small and just right stylus is night and day, but it reveals the second issue with playing records: equalization.

Virtually all records have some kind of equalization applied to the recorded audio, to balance out the imperfections of the recording medium. Upon playback, this effect is inverted, restoring the original signal as much as possible. Since 1954, the de facto standard has been RIAA equalization, and this is what the average record preamplifier also assumes you are using. Unfortunately, this means that for many records from around that time and before, the wrong equalization will be applied, as basically every publisher had their own standard.

In the video, [Techmoan] figures out a way to get an affordable way to playback these wide groove, 78 RPM records, and to dodge the RIAA equalization step by tapping directly into the signal from the cartridge. This would likely be a lot easier if one threw more money at the whole thing, but where is the fun in that?

Continue reading “Playing 78 RPM Shellac Records: It’s Not Just About Speed”

Hackaday Podcast 213: Not Your Grandfather’s Grandfather Clock, The Engineering Behind Art, Hydrogen Powered Flight

Join Hackaday Editors Elliot Williams and Tom Nardi as they review some of their favorite hacks and projects of the past week. The episode starts with a discussion about the recently announced Artemis II crew, and how their mission compares to the Apollo program of the 1960s and 70s.

From there, the pair theorize as to why Amazon’s family of Echo devices have managed to evade eager hardware hackers, take a look at a very impressive SMD soldering jig created with some fascinating OpenSCAD code, marvel at the intersection of art and electronic design, and wonder aloud where all the cheap motorized satellite dishes are hiding. Stick around for some questionable PCB design ideas, a Raspberry Pi expansion that can read your mind, and the first flight of a (semi) hydrogen-powered aircraft.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download your own personal copy!

Continue reading “Hackaday Podcast 213: Not Your Grandfather’s Grandfather Clock, The Engineering Behind Art, Hydrogen Powered Flight”

Retrotechtacular: Voice Controlled Typewriter Science Project In 1958

Hackaday readers might know [Victor Scheinman] as the pioneer who built some of the first practical robot arms. But what was a kid like that doing in high school? Thanks to a film about the 1958 New York City Science Fair, we know he was building a voice-activated typewriter. Don’t believe it? Watch it yourself below, thanks to [David Hoffman].

Ok, we know. Voice typing is no big deal today, and, frankly, [Victor’s] attempt isn’t going to amaze anyone today. But think about it. It was 1958! All those boat anchor ham radios behind him aren’t antiques. That’s what radios looked like in 1958. Plus, the kid is 16 years old. We’d say he did pretty darn good!

Continue reading “Retrotechtacular: Voice Controlled Typewriter Science Project In 1958”

A Compact Camera Running Linux? What’s Not To Like!

One of the devices swallowed up by the smartphone for the average person is the handheld camera, to the extent that the youngsters are reported to be now rediscovering 20-year-old digital cameras for their retro cool factor. Cameras aren’t completely dead though, as a mirrorless compact or a DSLR should still blow the socks off a phone in competent hands. They’ve been around long enough to be plentiful secondhand, which makes [Georg Lukas]’ look at a ten-year-old range of models from Samsung worth a second look. Why has a deep dive into old cameras caught our eye? These cameras run Linux, in the form of Samsung’s Tizen distribution.

His interest in the range comes from owning one since 2014, and it’s in his earlier series of posts on hacking that camera that we find some of the potential it offers. Aside from the amusement that it runs an unprotected X server, getting to a root shell is fairly straightforward as we covered at the time, and it turns out to be a very hackable device.

Cameras follow a Gartner hype cycle-like curve in the popularity stakes, so for example the must-have bridge cameras and compact cameras of the late-2000s are now second-hand-store bargains. Given that mirrorless cameras such as the Samsung are now fairly long in the tooth, it’s likely that they too will fall into a pit of affordability before too long. One to look out for, perhaps.

Why A Community Hackerspace Should Be A Vital Part Of Being An Engineering Student

Travelling the continent’s hackerspaces over the years, I have visited quite a few spaces located in university towns. They share a depressingly common theme, of a community hackerspace full of former students who are now technology professionals, sharing a city with a university anxious to own all the things in the technology space and actively sabotaging the things they don’t own. I’ve seen spaces made homeless by university expansion, I’ve seen universities purposefully align their own events to clash with a hackerspace open night and discourage students from joining, and in one particularly egregious instance, I’ve even seen a university take legal action against a space because they used the name of the city, also that of the university, in the name of their hackerspace. I will not mince my words here; while the former are sharp practices, the latter is truly disgusting behaviour.

The above is probably a natural extension of the relationship many universities have with their cities, which seems depressingly often to be one of othering and exclusion. Yet in the case of hackerspaces I can’t escape the conclusion that a huge opportunity is being missed for universities to connect engineering and other tech-inclined students with their alumni, enhance their real-world skills, and provide them with valuable connections to tech careers.

Yesterday I was at an event organised by my alma mater, part of a group of alumni talking to them about our careers.  At the event I was speaking alongside an array of people with varying careers probably more glittering than mine, but one thing that came through was that this was something of a rare opportunity for many of the students, to talk to someone outside the university bubble. Yet here were a group of engineers, many of whom had interesting careers based locally, and in cases were even actively hiring. If only there were a place where these two groups could informally meet and get to know each other, a community based on a shared interest in technology, perhaps?

It’s not as though universities haven’t tried on the hackerspace front, but I’m sad to say that when they fill a room with cool machines for the students they’re rather missing the point. In some of the cases I mentioned above the desire to own all the things with their own students-only hackerspace was the thing that led to the community hackerspaces being sabotaged. Attractive as they are, there’s an important ingredient missing, they come from a belief that a hackerspace is about its facilities rather than its community. If you were to look at a room full of brand-new machines and compare it with a similar room containing a temperamental Chinese laser cutter and a pair of battered 3D printers, but alongside a group of seasoned engineers in an informal setting, which would you consider to be of more benefit to a student engineer? It should not be a difficult conclusion to make.

Universities value their local tech industry, particularly that which has some connection to your university. You want your students to connect with your alumni, to connect with the local tech scene, and to ultimately find employment within it. At the same time though, you’re a university, you see yourselves as the thought leader, and you want to own all the things. My point is that these two positions are largely incompatible when it comes to connecting your engineering students with the community of engineers that surround you, and you’re failing your students in doing so.

Thus I have a radical proposal for universities. Instead of putting all your resources on a sterile room full of machines for your students, how about spending a little into placing them in a less shiny room full of professional engineers on their off-time? Your local hackerspace is no threat to you, instead it’s a priceless resource, so encourage your students to join it. Subsidise them if they can’t afford the monthly membership, the cost is peanuts compared to the benefit. Above all though, don’t try to own the hackerspace, or we’re back to the first paragraph. Just sometimes, good things can happen in a town without the university being involved.

Robot 3D Prints Giant Metal Parts With Induction Heat

While our desktop machines are largely limited to various types of plastic, 3D printing in other materials offers unique benefits. For example, printing with concrete makes it possible to quickly build houses, and we’ve even seen things like sugar laid down layer by layer into edible prints. Metals are often challenging to print with due to its high melting temperatures, though, and while this has often been solved with lasers a new method uses induction heating to deposit the metals instead.

A company in Arizona called Rosotics has developed a large-scale printer based on this this method that they’re calling the Mantis. It uses three robotic arms to lay down metal prints of remarkable size, around eight meters wide and six meters tall. It can churn through about 50 kg of metal per hour, and can be run off of a standard 240 V outlet. The company is focusing on aerospace applications, with rendered rocket components that remind us of what Relativity Space is working on.

Nothing inspires confidence like a low-quality render.

The induction heating method for the feedstock not only means they can avoid using power-hungry and complex lasers to sinter powdered metal, a material expensive in its own right, but they can use more common metal wire feedstock instead. In addition to being cheaper and easier to work with, wire is also safer. Rosotics points out that some materials used in traditional laser sintering, such as powdered titanium, are actually explosive.

Of course, the elephant in the room is that Relativity recently launched a 33 meter (110 foot) tall 3D printed rocket over the Kármán line — while Rosotics hasn’t even provided a picture of what a component printed with their technology looks like. Rather than being open about their position in the market, the quotes from CEO Christian LaRosa make it seem like he’s blissfully unaware his fledgling company is already on the back foot.

If you’ve got some rocket propellant tanks you’d like printed, the company says they’ll start taking orders in October. Though you’ll need to come up with a $95,000 deposit before they’ll start the work. If you’re looking for something a little more affordable, it’s possible to convert a MIG welder into a rudimentary metal 3D printer instead.