Solid State Battery From The Man Who Brought Us Lithium Ion

Who is [John Goodenough]? He’s 94, so he’s been around long enough that you ought to know him. He was one of the co-inventors of the lithium-ion battery. Think about how much that battery has changed electronics. [Goodenough] along with [Maria Helena Braga] may have come up with that battery’s successor: the solid state battery. There’s a paper available that is free, but requires registration. If you don’t want to register, you can read the news release from the University of Texas with no trouble.

Keywords used to describe the new battery are low-cost, noncombustible, long cycle life, high energy density, and fast charge and discharge rates. The pair is also claiming three times the energy density of a current lithium-ion battery. They also claim that the batteries recharge in minutes instead of hours. You can see a video from [Transport Evolved] that discusses the invention, below.

Continue reading “Solid State Battery From The Man Who Brought Us Lithium Ion”

Hackaday Links: March 5, 2017

Statistically, more celebrities died in 2016 than would be expected. 2017 is turning out to be a little better, but we did recently lose the great [Bill Paxton]. Game over, man. Game over. A few years ago, [Benheck] built his own pinball machine. It’s Bill Paxton Pinball. A great build, and worth revisiting, just like another viewing of Aliens and Apollo 13.

Some of the most popular 3D-printable objects are [flowalistik]’s low-poly Pokemon series. They’re great models, even though he missed the most obvious Pokemon. Of [flowalistik]’s low-poly Pokemon models, the Bulbasaur is a crowd favorite. Because this model is constructed from flat planes joined at an angle, it’s possible to make a huge low-poly Bulbasaur on a laser cutter or a CNC router. Go home Bulbasaur, you’re drunk. We are eagerly awaiting details on how this grass and poison-type tank was made.

For the last few months, [Matthew Cremona] has been building a huge bandsaw mill in his backyard. It’s built for cutting logs into lumber, and this thing is massive. He’s been posting build log videos for the last few months, but this week he’s finally gotten to where we want him to be: he’s cutting gigantic logs. In the coming weeks, he’s going to be cutting a maple crotch that’s 60 inches (1.5 meters) across.

It’s still a bit early, but here are the details for the 2017 Open Hardware Summit. It’s October 5th in Downtown Denver. If you want to speak at OHS, here you go. If you want to sponsor OHS, here you go. Tickets are over on Eventbrite.

What happens when you give away a new Raspberry Pi Zero W to the fifth caller? This. In other news, Adafruit somehow acquired a real New York City payphone. I’ve heard they were replacing these with WiFi hotspots, which means there are a ton of payphones in a warehouse somewhere? Can anyone hook us up?

Mycelia + Sawdust = House?

Take a guess. What is the featured picture for this article? If you’re channeling your inner Google image recognition, you might say: “Best guess for this image: rock.” But, like Google, you’d be wrong. Instead, what you see are bricks made out of fungi obtained from tissues of mycelia.

By taking fungi obtained from tissues of mycelia and storing them in a jar filled with a growth medium (usually sawdust), MycoWorks is creating all sorts of materials with exciting properties. In just three to seven days, the fungi and sawdust mixture expands and forms into clumps of material, which are then used to create products like handbags, purses, bricks, you name it. According to co-founder Phil Ross, “production of this material is similar to making ravioli from scratch, and the final product is more resilient than concrete.”

The resulting materials are buoyant, self-extinguishing and stress dissipating. Moreover, the bricks are alive up until they are put in a kiln. This means bricks that are placed next to each other will grow together, effectively enabling a structure to be made out of just brick, no mortar. And, while they’re not 3D printed, houses made in this fashion have great potential. If these cool new materials have got you excited, and you want to get cozy with the fungus among us, why not go all out with an automated mushroom cultivator?

Video after the break.

Continue reading “Mycelia + Sawdust = House?”

A Command-Line Stepper Library With All The Frills

When you already know exactly where and how you’d like your motor to behave, a code-compile-flash-run-debug cycle can work just fine. But if you want to play around with a stepper motor, there’s nothing like a live interface. [BrendaEM]’s RDL is a generic stepper motor driver environment that you can flash into an Arduino. RDL talks to your computer or cell phone over serial, and can command a stepper-driver IC to move the motor in three modes: rotary, divisions of a circle, and linear. (Hence the acronumical name.) Best of all, the entire system is interactive. Have a peek at the video below.

The software has quite a range of capabilities. Typing “?” gets you a list of commands, typing “@” tells you where the motor thinks it is, and “h” moves the motor back to its home position. Rotating by turns, degrees, or to a particular position are simple. It can also read from an analog joystick, which will control the rotation speed forward and backward in real time.

Division mode carves the pie up into a number of slices, and the motor spins to these particular locations. Twelve, or sixty, divisions gives you a clock, for instance. Acceleration and deceleration profiles are built in, but tweakable. You can change microstepping on the fly, and tweak many parameters of the drive, and then save all of the results to EEPROM. If you’re playing around with a new motor, and don’t know how quickly it can accelerate, or what speeds it’s capable of, nothing beats playing around with it interactively.

Continue reading “A Command-Line Stepper Library With All The Frills”

Wake Up! The Cat Came Back!

In order to get the most out of the batteries connected to your microcontroller, you’ll probably need to put it to sleep, the deeper the better. [Rgrokett] was curious about the nighttime habits of his cat, and came up with a nice little hack to get more battery life out of the ESP8266 that he was using.

[rgrokett]’s cat enters and leaves through a cat-door. He figured a PIR sensor would let him know when there was movement around the door. He could then tell if the cat was around. Leaving the PIR sensor and the ESP8266 microcontroller (an Adafruit Huzzah) on all the time drained the batteries pretty quickly, so [rgrokett] decided to try putting the Huzzah to sleep.

The trick in this build is that the PIR sensor is used to reset the Huzzah when it triggers. The Huzzah requires the reset switch to go from high to low, but the PIR trigger goes from low to high, so a transistor is used to invert the PIR sensor’s trigger signal. When the Huzzah wakes up, it connects to the WiFi network and sends [rgrokett] an email via IFTTT ([rgrokett]’s description goes over the steps to set up a secure connection to IFTTT.)

It’s a pretty simple hack, but it increases [rgrokett] system’s battery life from a couple of days to more than a month (he’s still waiting to see how long they’ll last) and all that was needed was the microcontroller, the sensor and a couple of parts. We have a couple of older hacks about putting the ESP modules into deep sleep, such as this one, and check out this tutorial on PIR sensors.

Portable RetroPie Suitcase For Multiplayer On The Go!

Portable gaming — and gaming in general —  has come a long way since the days of the original Game Boy. With a mind towards portable multiplayer games, Redditor [dagcon] has assembled a RetroPie inside a suitcase — screen and all!

This portable console has almost everything you could need. Four controllers are nestled beside two speakers. Much of the power cabling is separated and contained by  foam inserts. The screen fits snugly into the lid with a sheet of rubber foam to protect it during transport.

Tucked behind the monitor rests the brains of this suitcase console: a Raspberry Pi and the associated boards. [Dagcon] resorted to using a dedicated sound card for the speakers, diverting the output from the HDMI port. An LCD screen controller was also necessary as the screen had been re-purposed from its previous life as a laptop screen. [Dagcon] offers some tips on how to go about accomplishing this yourself and a helpful Instructables link.

Continue reading “Portable RetroPie Suitcase For Multiplayer On The Go!”

Simple Marble Machine Captivates The Eyes

Marble machines are the kind of useless mechanisms that everybody loves. Their sole purpose is to route marbles through different paths for your viewing pleasure. They can be extremely complicated contraptions, and sometimes that is the precisely the point. However, even a simple mechanism can be delightful to watch. [Denha] just uploaded his latest creation, using a spring as elevator and a simple zig-zag path.

The construction is relatively simple, a spring with the appropriate pitch for the steel balls size is used as an elevator. The spring is driven by a small electric motor via a couple of gears, and a wooden zig-zag path for the marbles lies next to the spring. The marbles go up with the spring and return in the wooden path in an endless journey.

We believe that a serious hacker should build a marble machine at least once in their life. We have posted several of them, from simple ones to other more complicated designs that require careful craftsmanship. [Denha]’s Youtube channel is full of good ideas to inspire your first project. In any case, watching a marble machine at work is quite a nice, relaxing experience.

Continue reading “Simple Marble Machine Captivates The Eyes”