Tabletop Handybot Is Handy, And Powered By AI

Decently useful AI has been around for a little while now, and robotic arms have been around much longer. Yet somehow, we don’t have little robot helpers on our desks yet! Thankfully, [Yifei] is working towards that reality with Tabletop Handybot.

What [Yifei] has developed is a robotic arm that accepts voice commands. The robot relies on a Realsense D435 RGB-D camera, which provides color vision with depth information as well. Grounding DINO is used for object detection on the RGB images. Segment Anything and Open3D are used for further processing of the visual and depth data to help the robot understand what it’s looking at. Meanwhile, voice commands are interpreted via OpenAI Whisper, which can feed prompts to ChatGPT for further processing.

[Yifei] demonstrates his robot picking up markers on command, which is a pretty cool demo. With so many modern AI tools available, we’re getting closer to the ideal of robots that can understand and execute on general spoken instructions. This is a great example. We may not be all the way there yet, but perhaps soon. Video after the break.

Continue reading “Tabletop Handybot Is Handy, And Powered By AI”

Linux Fu: The Root Cause

There was a time when real system administrators just logged into Unix systems as root. But as we all know — with great power comes great responsibility. It’s too easy to do terrible things when you are really just trying to do normal work, and, on top of that, malicious software or scripts can do naughty things without you noticing. So common practice quickly changed to where an administrator had a personal account but then had a way to run certain programs “as root” which means you had to deliberately decide to wield your power.

Before long, people realized you don’t even need a root login account. That way, an attacker can’t try to log into root at all. Sure, they could still compromise your account, but a random hacker knows you might have a root user, but it is harder to guess that your login ID is JTKirkJr or whatever.

There are other ways to control what users can do, but many Linux and Unix installations still use this model. The root can do everything but login, and specific users get the privilege to do certain things.

Continue reading “Linux Fu: The Root Cause”

This MIDI BoomBox Takes Floppies

You might have had a boombox back in the 1990s, but probably not like the Yamaha MDP-10. As [Nicole] explains, the odd little device played MIDI files from a floppy disk. Technically, it wasn’t truly a boombox because it lacked batteries, but it sure looks like one.

The box also had a MIDI input jack, but no output. For an antique gadget, it is pretty impressive, but maybe not much by today’s standards. Of course, what we really wanted to see was what was inside. [Nicole] doesn’t disappoint.

The boombox brains are a pair of Hitachi H8 3000-series CPUs. The boards actually looks surprisingly modern until you notice the lack of integration. There are separate ROMs, RAMs, a floppy drive controller, and, of course, MIDI chips. Apparently, opening the box up is a challenge so [Nicole] suggests not doing it unless necessary. We assume it went back together with no problems.

There are lots of tidbits about peculiarities in the device. There are also, of course, recordings of the output and some comparisons from other devices. A great look into an old and odd piece of gear.

Since it has an input jack, you could connect it to — oh, we don’t know — maybe some spoons? Or a hurdy-gurdy.

Peeking Underground With Giant Flying Antennas

Helicopters are perhaps at their coolest when they’re being used as flying cranes — from a long dangling cable, they can carry everything from cars, to crates, to giant hanging saws.

What you might find altogether more curious are the helicopters that fly around carrying gigantic flat antenna arrays. When you spot one in the field, it’s not exactly intuitive to figure out what they’re doing, but these helicopters are tasked with important geological work!

Continue reading “Peeking Underground With Giant Flying Antennas”

Static Recompilation Brings New Life To N64 Games

Over the past few years a number of teams have been putting a lot of effort into taking beloved Nintendo 64 games, decompiling them, and lovingly crafting them into highly portable C code. This allows for these games to not only run natively on PCs, but also for improvements to be made to the rendering engine and other components.

Yet this artisan approach to porting these games means a massive time investment, something which static binary translation (static recompilation) may conceivably speed up. Enter the N64: Recompiled project, which provides a binary translation tool to ease the translation of the N64’s binaries into C code.

This is effectively quite similar to what an emulator does in real-time, just with the goal of creating a permanent copy of the translated instructions. After this static binary translation, the C code can be compiled again, but as noted by the project’s documentation, a suitable runtime is needed to get a functional game. An example of this is the Zelda 64: Recompiled project, which uses the N64: Recompiled project at its core, while providing the necessary scaffolding and wrappers to create a working copy of The Legend of Zelda: Majora’s Mask as output.

In the video below, [Modern Vintage Gamer] takes the software for a test drive and comes away very excited about the potential it has to completely change the state of N64 emulation. To be clear, this isn’t a one-button-press solution — it still requires capable developers to roll up their sleeves and get the plumbing in. It’s going to take some time before you favorite game is supported, but the idea of breathing new life into some of the best games from the 1990s and early 2000s certainly has us eager to see where this technology goes

Continue reading “Static Recompilation Brings New Life To N64 Games”

Quad-Motor Electric Kart Gets A Little Too Thrilling

[Peter Holderith] has been on a mission to unlock the full potential of a DIY quad-motor electric go-kart as a platform. This isn’t his first rodeo, either. His earlier vehicle designs were great educational fun, but were limited to about a kilowatt of power. His current platform is in theory capable of about twenty. The last big change he made was adding considerably more battery power, so that the under-used motors could stretch their legs a little, figuratively speaking.

How did that go? [Peter] puts it like this: “the result of [that] extra power, combined with other design flaws, is terror.” Don’t worry, no one’s been hurt or anything, but the kart did break in a few ways that highlighted some problems.

The keyed stainless steel bracket didn’t stay keyed for long.

One purpose of incremental prototyping is to bring problems to the surface, and it certainly did that. A number of design decisions that were fine on smaller karts showed themselves to be inadequate once the motors had more power.

For one thing, the increased torque meant the motors twisted themselves free from their mountings. The throttle revealed itself to be twitchy with a poor response, and steering didn’t feel very good. The steering got heavier as speed increased, but it also wanted to jerk all over the place. These are profoundly unwelcome feelings when driving a small and powerful vehicle that lurches into motion as soon as the accelerator is pressed.

Overall, one could say the experience populated the proverbial to-do list quite well. The earlier incarnation of [Peter]’s kart was a thrilling ride, but the challenge of maintaining adequate control over a moving platform serves as a reminder that design decisions that do the job under one circumstance might need revisiting in others.

Home Assistant Display Uses E-Ink

[Markus] grabbed an ESP32 and created a good-looking e-ink dashboard that can act as a status display for Home Automation. However, the hardware is generic enough that it could work as a weather station or even a task scheduler.

The project makes good use of modules, so there isn’t much to build. A Waveshare 2.9-inch e-ink panel and an ESP32, along with a power supply, are all you need. The real work is in the software. Of course, you also need a box to put it in, but with 3D printing, that’s hardly a problem.

Well, it isn’t a problem unless — like [Markus] — you don’t have a 3D printer. Instead, he built a wooden case that also holds notepaper.

The software uses ESPHome to interface with Home Assistant. There is a fair amount of configuration, but nothing too difficult. Of course, you can customize the display to your heart’s content. Overall, this is a great example of how a few modular components and some open-source software can combine to make a very simple yet useful project.

There are many ways to use an ESP32 in your home automation setup. Maybe you can salvage the e-ink displays. Just try not to get carried away.