Android+Arduino – Face Following RC Car

androidRCcar_01_14

To some of us, hacking an RC Car to simply follow a black line or avoid obstacles is too easy, and we’re sure [Shazin] would agree with that, since he created an RC Car that follows your face!

The first step to this project was to take control of the RC Car, but instead of hijacking the transmitter, [Shazin] decided to control the car directly. This isn’t any high-end RC Car though, so forget about PWM control. Instead, a single IC (RX-2) was found to handle both the RF Receiver and H-Bridges. After a bit of probing, the 4 control lines (forward/back and left/right) were identified and connected to an Arduino.

[Shazin] paired the Arduino with a USB Host Shield and connected it up with his Android phone through the ADB (Android Debug Bridge). He then made some modifications to the OpenCV Android Face Detection app to send commands to the Arduino based on ‘where’ the Face is detected; if the face is in the right half of the screen, turn right, if not, turn left and go forward.

This is a really interesting project with a lot of potential; we’re just hoping [Shazin] doesn’t have any evil plans for this device like strapping it to a Tank Drone that locks on to targets!

Continue reading “Android+Arduino – Face Following RC Car”

[Ben Krasnow] Did It All For The (Perfect) Cookie

[Ben Krasnow] is on a mission. He’s looking for the perfect chocolate chip cookie. To aid him in this noble endeavor, he’s created the cookie perfection machine. From cleaning with plasma, to a DIY CT scanner, to ruby lasers, to LED contact lenses, [Ben] has to be one of the most prolific and versatile hackers out there today. What better way to relax after a hard day of hacking than to enjoy a glass of milk and a perfect chocolate chip cookie?

This is actually an update to the machine we first saw back in 2012. [Ben] has loaded his machine up with ingredients, and has everything under computer control. The machine will now dispense the exact amount of ingredients specified by the computer, measured by a scale. Everything happens one cookie at a time. The only downside is that the machine doesn’t have a mixer yet. [Ben] has to mix a single cookie’s worth of dough for every data point. His experiments have returned some surprising results. Too little flour actually results in a crisper cookie, as the wetter dough spreads out to a thinner layer. [Ben] also found that adding extra brown sugar also doesn’t result in a more chewy cookie. Even though he’s still in the early experimentation phases, [Ben] mentions that since it’s hard to make a bad chocolate cookie, even his failures taste pretty good.

Continue reading “[Ben Krasnow] Did It All For The (Perfect) Cookie”

R/C Rock Crawler Prepped To Become Stair Climbing Robot

rc-robot-frame

[Starlino] is working on an autonomous mobile robot. Like many before him, he looked to the radio controlled car world for a base frame. He found a good candidate in a rock crawler model called “Mad Torque”. Crawlers have been around for years, but they’ve recently been getting more popular. As always, popularity leads to lower priced entry-level models, which puts this crawler at a reasonable price for a robot frame. As the name implies, rock crawlers are all about crawling. Relatively low speeds, locked differentials, four-wheel drive, and (optional) four-wheel steering.

Of course, [Starlino] had to test drive his frame out before tearing it down to install electronics. As long time R/C modelers ourselves, we can’t blame him. Testing uncovered one major problem. The Mad Torque wasn’t quite mad enough to climb the stairs in his house. The front tires would grab and pull over the first step, but the wheelbase wasn’t quite long enough for the rear wheels to grab hold.

[Starlino’s] solution was to extend the wheelbase. For most 4WD R/C cars or trucks this would be a major problem, as the motors are mounted amidships. An extended wheelbase would mean also extending the drive shafts or belts. This isn’t a problem with rock crawlers. Crawlers need to support huge amounts of suspension articulation. Rather than create complex drive linkages, the common design is to place an electric motor on each axle. This isn’t the greatest idea in terms of unsprung mass, but it does make for easy wheelbase changes. [Starlino] found that the design was so modular he could bolt a second chassis up to the original. The new rear chassis bolted to the front at the top shock mounts. An extra set of battery brackets formed a lower brace. The new extended truck was long enough to clear the steps, though it does still struggle a bit, as can be seen in the video. We think larger diameter tires might help a bit here. [Starlino’s] next step is to ditch the R/C unit and give this ‘bot a brain!

Continue reading “R/C Rock Crawler Prepped To Become Stair Climbing Robot”

Your Mouse Is A Terrible Webcam

camera

It should come as no surprise your optical mouse contains a very tiny, very low resolution camera. [Franci] decided to take apart one of his old mice and turn that tiny optical sensor into a webcam.

Inside [Franci]’s Logitech RX 250 is an ADNS-5020 optical sensor. This three wire SPI device stuffed into an 8-pin package is a 15×15 pixel grayscale image sensor. [Franci] started this project by bringing out the Arduino and Ethernet shield. After soldering a pull-up resistor to the image sensor’s reset pin, connecting the rest of the circuit was as simple as soldering a few wires to the Arduino.

The Arduino sketch sends the image data for each pixel to a computer over a serial connection. A bit of javascript and a touch of HTML takes this pixel data and turns it into a webpage with a live view of whatever is directly under [Franci]’s mouse.

Video of the mousewebcam in action below.

Continue reading “Your Mouse Is A Terrible Webcam”

Refurbishing A Vibratory Tumbler With A Dryer Motor

vibe

[Jake von Slatt] of the Steampunk Workshop is at again, this time refurbishing a cheap vibratory tumbler that had died after just one project.

The original Eastwood tumbler looked nice, but obviously didn’t go through much life-cycle testing at the company that designed it. Upon taking it apart, [Jake] discovered that the bearings in the motor were shot — after only a few hours of operation! Because of this he decided to start from scratch, keeping only the bowl, lid, and of course, the tumbling media.

[Jake’s] redesign makes use of Volkswagen brake drums for a very heavy duty base, a custom machined ball bearing plate made out of scrap aluminum, a flexible motor coupling made by welding a heavy spring onto two shafts, some more springs to balance the bowl, and a reclaimed dryer motor. It might not look pretty, but we think it’ll last a wee bit longer than the original.

He’s calling it his latest feat of post-apocalyptic engineering by using only parts on hand, and while we’d have to agree that his use of scrap material is impressive, we’d like to see him be able to power his rebuilt Bridgeport Mill off the grid when the apocalypse hits!

As always, he’s made an excellent video describing the project — don’t forget to check it out after the break.

Continue reading “Refurbishing A Vibratory Tumbler With A Dryer Motor”

Walkalong Heart Glider

IMG_2924-1000

[Darcy Whyte] is a bit of a paper plane aficionado, so in preparation for this year’s Valentine’s day (that’s one month from today!) he’s created a flying Walkalong heart glider you can make yourself!

First off, what’s a Walkalong glider? Well, it’s a type of toy airplane made out of a light material with geometry that allows for a very slow descent — one that can be extended almost indefinitely if you walk behind it to create a slight draft. [Darcy] has made a whole bunch of these in all different shapes and sizes, and even got to fly them around the Canadian Aviation and Space Museum for a Walkalong Glider Meetup!

He’s since created the do it yourself Walkalong heart glider which can easily fit inside a card for a very unique Valentine’s memento. It does require a foam cutter to make, but [Darcy] also has plans on his site for a DIY hot-wire foam cutter that costs less than $10 to build!

It’s a cute little project — stick around after the break to see how it’s done!

Continue reading “Walkalong Heart Glider”

504 Segment Clock

FIveOfour_01_13

Trying to reinvent the clock has been done over and over again, but it’s always fun to see how over-engineered and complex these designs can get. [Bertho’s] last working clock in his house was the built-in clock on the VCR, so he decided it was finally time to build his own 504 Segment clock.

Yep, that’s right, 504 Segments! This clock uses 72 7-Segment displays to tell time. The video after the break shows the clock in action, but time is read by looking at each ring of displays: outer=seconds, middle=minutes, and inner=hour. [Bertho] could’ve just stopped there, but he decided to load the display up with sensors, so hand-waiving can change modes, and brightness can be regulated based on ambient light conditions. And since he has individual control over each segment, he has implemented some pretty cool mind-melting animations. Oh, and did we mention that the display synchronizes with an NTP server?

The display is divided into 4 quadrants, each containing 18 7-Segment displays. The control architecture is interesting because each quadrant is controlled by its own PIC microcontroller, which handles the continuous multiplexing and modulation of the 18 7-Segment displays.  A main control board contains another (more powerful) PIC to update the 4 quadrants via a serial bus. This board also handles the Ethernet connection, sensor interface, and local RTC(real time clock). This isn’t the first time we’ve seen [Bertho’s] amazing work, so make sure you check out his useless machine and executive decision maker.

Continue reading “504 Segment Clock”