Please Release Your Unused Tickets

LA2014-109x180

The Gathering is next Tuesday and we are starting to get excited about it! There is a waiting list of people who would like a ticket. If you registered for a ticket that you will not be able to to use, please log in and cancel it.

Cancelling your unused ticket will automatically free up a ticket for someone on the waiting list. Cancellation instructions are below. We want to pack the house and making sure no ticket goes unused is important.

Still want to attend? It’s not too late. Add yourself to the waiting list.

Continue reading “Please Release Your Unused Tickets”

Creating PCBs With 3D Resin Printers

PCB

The folks over at Full Spectrum Laser are Kickstarting their own 3D printer – a stereolithography machine like the Form 1 and B9 Creator printers. During their testing, they discovered a new application for these SLA printers that should prove to be very useful for the makers and builders using machines – manufacturing PCBs with UV-sensitized copper clad boards.

Full Spectrum Laser’s printer – the Pegasus Touch – uses a near UV laser and a galvo system to build objects in UV-curing resin layer by layer. In retrospect it seems pretty obvious a UV laser would expose UV sensitive boards, but this discovery simply reeks of cleverness and is a nice ‘value added’ feature for the Pegasus printer.

The Pegasus printer has a laser spot size of 0.25mm, meaning the separation between traces on Pegasus-produced PCBs will be just under 10 mils. That’s a bit larger than the limits of laser printer-based PCB fabrication but far, far less complicated. Making a PCB on an SLA printer is as easy as removing the resin tank and putting a sensitized board on the build platform. Draw some traces with the printer, and in a few minutes you have an exposed board.

We’d really like to see if this technique can also be used with other SLA printers. if anyone out there would like to experiment, be sure to send the results into the tip line.

Video from Full Spectrum Laser below.

Continue reading “Creating PCBs With 3D Resin Printers”

Sega Master System On A STM32 Development Board

Sega on STM32

Some hackers have managed to convert an STM32 development into a Sega Master System emulator. This means Sonic the Hedgehog running on an ARM Cortex-M4.

This hack has a number of parts. First, [Alessandro Rocchegiani] showed off a video of his Sega Master System emulator running on the STM32F429 Discovery development board. This first version used the on board 2.4″ TFT LCD screen.

[Fabrice] was working with this STM32 Discovery board already. He had developed an expansion board that added a number of features to the development kit, including an R-2R DAC for video output. When [Fabrice] found out about the Sega Master System emulator, he worked with [Alessandro] and his son [Fabrizio] to get VGA output working. They also added support for the Wii controller using [Fabrice]’s Wii library. The result is a Sega Master System emulator with VGA output at 640 x 480, with 16 bit color and Wii controller support.

You can watch a video of both the LCD and VGA versions of the hack after the break.

Continue reading “Sega Master System On A STM32 Development Board”

Hydro: The Low Cost Waterjet Cutter

Waterjet cutters are generally huge machines, with equally large price tags. But what if there was a hobbyist level waterjet cutter that was actually affordable? Well, for their Senior Design Project at the University of Pennsylvania, [Adam Libert] and his team made one that could retail for less than $5000.

[Adam] was the lead mechanical designer on this amazing project, and he designed the fully waterproof XY gantry, capable of withstanding the water and abrasive from the cutter. The entire machine is only 2′ x 2′ by about 5′ tall, making it extremely portable and easy to move through doorways — and it runs off of plain old 120VAC and shop air. It is capable of cutting through up to 1/4″ aluminum and 1/8″ steel with a working area of 12″ x 14″ at a tolerance of 0.005″.

Not surprising, the project won the Mechanical Engineering Senior Design competition in 2012 with accolades for outstanding creativity. We weren’t able to find any information on the future plans for this project, but we hope they make it open-source, or even run a crowd-funding campaign for it.

The goal was to create the first ever low-cost, small scale, and easy to use waterjet cutter, and judging by the video, it looks like they did it — stick around after the break to see for yourself.   

Continue reading “Hydro: The Low Cost Waterjet Cutter”

Copper Etching: Not Just For PCBs

etching buttons

[Morag Hickman] is an artist who makes use of ferric chloride for something other than etching a PCB. She uses the process to etch beautiful designs into her jewelry.

[Tortoise Butler] is a small film crew that created this three and a half minute film on the art of etching copper, and it is an absolute pleasure to watch. There are no computers, no toner transfers, and she doesn’t even etch on a flat surface. It’s an excellent example of doing something different — why not add etching to finish off a project? If you’ve already done PCBs, it can’t be that hard to do a logo instead!

Anyway, it’s been a while since we’ve shared a handmade hack, and we think this is a great example that deserves the spotlight. Don’t forget to send in your own handmade projects to the tips line!

Stick around after the break to enjoy the film — we recommend watching it full screen and in HD.

Continue reading “Copper Etching: Not Just For PCBs”

Fastening 3D Printed Parts

PC100358

Ever been curious on how to fasten 3D printed parts together? There are lots of ways to do it — but what’s the best way? [Chris Lopez] works in a machine shop and decided to do some testing of how best to tap 3D printed parts, so you don’t have to!

The typical ways to add fasteners in 3D printed parts include designing the thread right into the part (only works for big threads), adding a press-fit insert, drilling and tapping it like any other material, inserting a Heli-Coil, or even by using ultrasonic weld inserts. In fact, this Stratasys blog post actually goes into some good detail on the pros and cons of each!

But, there’s a much easier way. To tap a hole normally you need to locate it accurately, make a pilot hole with a center drill — ensuring it is straight and true — then drill through with the undersized tap drill, and finally, thread it with a tap. Luckily, your 3D printer takes care of almost all these steps. By simply designing your holes to be the tap drill size you can hand tap fairly strong threads in your 3D printed parts. Just make sure your wall thicknesses and or infill settings are high enough to make sure there is material to engage!

[Chris] also goes into some detail on creating captive nut geometry — but for that you’re going to have to check out his blog. And if you’re interested in another style of fastening 3D printed parts, why not inset magnets into them while they are printing?

Scooby-Doo Alarm Clock Repair

Scooby-Doo_alarm_clock_repair.Still001

This is more of a hack than a repair which is a good reason for me to feature my Scooby-Doo alarm clock repair. I started out trying to simply fix some broken hardware mounts that hold the display and button mechanism within the alarm clock that looks like the Scooby-Doo Mystery Van. During testing I noticed the display was very dim suggesting an unusual current load or other malfunction, plus the alarm was not functional.

One of the coolest features of the alarm was that it made a car honking noise when the alarm was activated. Unfortunately, it turned out that the chip-onboard which produced the honking sound was shorted internally causing some transistor overheating and the dim display. It was impossible to restore functionality of the custom chip-onboard, but lucky for me the data sheets for the LM8560 clock chip revealed that it could directly output a standard alarm beeping sound to a speaker. This required the PCB and some circuitry be configured differently.

In the end the clock’s current load came down to normal parameters, the display was once again bright and the alarm functioned using the standard beeping alarm sound that comes from the LM8560 clock chip. It is sad that the coolness factor of the alarm clock cannot be restored with the honking car sound alarm but my son is quite happy to have his favorite Scooby-Doo alarm clock functioning once again.

The circuit modifications may not have been the cleverest or the best solution, so if you have other suggestions please leave them in the comments below. You can watch the video of the circuit evaluation and repair modifications after the break.

Continue reading “Scooby-Doo Alarm Clock Repair”