A Nostalgic Look At What A 13 Year Old Can Do With A C64

[Armin] recently pulled out his Commodore 64 and looked back on the projects he did as a kid. The surprising thing is that we’re not talking quite as far in the past as you might image. He was 13 in 2002 and the family didn’t have a PC. But more than a decade before his father had purchased a C64 and [Armin] dug into the manual to teach himself how to code. This week he connected the old hardware to his video capture card to give us a demonstration on what he accomplished.

He had seen Windows 95 at the local computer club and figured why not program a clone of the software for the machine at hand? He called it Windows 105 (because that number is higher than 95) and worked out ways to mimic programs like DOS, Corel Draw, Notepad, and some of the programs from Microsoft Office. They didn’t include all the functionality of the real thing, but the look was there.

The story does have a happy ending. [Armin’s] parents saw what he was doing and managed to pick up a PC for him to play with. Now he’s a professional programmer looking back on the formative years that got him there. We’ve embedded one of his demo videos after the break for your enjoyment.

Continue reading “A Nostalgic Look At What A 13 Year Old Can Do With A C64”

7400 Logic Competition Winners Announced

The 7400 Logic Competition has drawn to a close. The winners were announced and there are quite a few of them. There were fifteen first place winners named, nine second place, and nineteen third place projects. The bounty of quality entries is a testament to the popularity of the contest. It helps to have a wide range of prizes and the post linked above lists all of the sponsors who donated goodies as an incentive.

The board seen above was awarded the reader’s choice, to which the grand prize was awarded. It is a 7400 series calculator. [Umair Mukati] and [Naveed Ahmed] — both are students at the Institute of Industrial Electronics Engineering in Karachi, Pakistan — developed the device as part of a class project. It is capable of adding or subtracting two digit numbers. This includes support for negative numbers as results. We’ve embedded a video demo of the calculator in action after the break.

Continue reading “7400 Logic Competition Winners Announced”

Wireless Water Heater Monitor Uses Whatever Was Lying Around

[Chris] set out to build a monitoring system for his water heater. It doesn’t Tweet or send SMS messages. It simply lights up an LED when the water heater is active. The one thing that complicates the setup is that he didn’t want to pull any wire from the garage into the house. What you see above is the wireless setup he used to accomplish this goal.

This is an electric water heater, so [Chris] patched into the 230V heating element feed. When the water heater is idle this connection is cut off. He used a transformer to step the voltage down to 17V and rectified it before feeding a 7805 power regulator. The rest of the transmitter circuit consists of a 555 timer driving the coil seen on the left. It is made out of telephone wire, with each of the four conductors inside connected together to multiply the number of windings. The box of breakfast sausages hosts the receiver coil. His hardware takes the induced current from that coil and amplifies it, feeding the signal to the base of a transistor responsible for switching the status LED. This works through the 6″ thick garage wall, although he did have to use a battery on the receiving end as his wall wart was injecting way too much noise into the system to work.

The Wedding Band: Milling Titanium And Wrapping It In Palladium

You’ve got to admit that custom milling your own wedding band is pretty hard-core. In this case [Jeremy Swerdlow] is making it for his friend, but that doesn’t diminish the fun of the project. After the break you can watch him mill a titanium ring and wrap it with a palladium inlay.

To solder palladium to titanium [Jeremy] would need special equipment, so he found another way to mate the dissimilar metals. He milled a dovetail groove in the center of the titanium band. To do that, he had to make a special cutting tool that was just the right size. Once had milled the ring’s rough dimensions, he had to fabricate a custom mandrel to hold the ring for the rest of the job. The dovetail was then filled with a palladium strip using a combination of heat and hammering. The two ends are soldered together using palladium solder. The ring in the middle shows this solder joint. To the right is a ring after the inlay is milled flush but before the final polishing which will bring out the best qualities of both metals.

If you don’t have the machine shop skills to pull this off you could always try your hand at 3d printed rings.

Continue reading “The Wedding Band: Milling Titanium And Wrapping It In Palladium”

Hand Soldering BGA Parts Should Be A Circus Act

Okay, we think it’s questionable when people say they have no problem soldering QFN packages, but BGA? Granted this chip has far fewer balls on it than many, but it’s still quite impressive that [Xevel] was able to solder this BGA breakout by hand.

The chip you see above is a TMP006 infrared temperature sensor from TI. [Xevel] picked up the part but didn’t want to break the bank when prototyping by buying a proper PCB to host it. There are only eight conductors on it, arranged in a grid with 0.5mm pitch. That didn’t seem to scare him off, as the video after the break shows him connecting each to a conductor on a hunk of stripboard.

[Xevel] mentions that this is a dead-bug style project. Usually you glue the part upside down when using that technique, but it needs line of sight to get an accurate temperature reading so he first cut a hole in the substrate. We’d bet he’s using wire-wrapping wire to make the connections. It’s a very fine solid core wire which is perfect for this kind of work.

Continue reading “Hand Soldering BGA Parts Should Be A Circus Act”

Cornell ECE 4760 Lecture Videos Now Online

Whenever we hear about ECE 4760 we take notice. That’s because a ton of fantastic hacked together projects have resulted from the class. It’s offered at Cornell University and focuses on designing projects based on microcontrollers. We look at it as a ‘how to connect everything to your microcontroller’ guide. The good news for you is that 34 lecture videos from the Spring 2012 ECE 4760 class are now available to watch for free online. When coupled with the course webpage itself (which outlines the reading, labs, and homework) this turns into an opportunity to work through the entire course on your own schedule.

If you need a brief preview, here’s a couple random things we’ve seen as final projects from the course: a digital saxophone, a handwriting decoder, and a haptic feedback unit for building your biceps.

We’re still working our way through the Nand2Tetris project, but we’re putting these lectures on our watch list for later.

[via Reddit]

How To Setup A Hackerspace From Someone Who’s Done It Before

We just got a tip from [PT] that a seven part series on how to start a Hackerspace will be posted this week. The blog over at Adafruit will be publishing one installment a day. Right now the introduction (linked above) and volume 1 are available. This covers what a Hackerspace is and who you might attract to help you get started. Tomorrow’s installment covers requirements you have to meet, which we assume delves into tax status (what you have to do to get 501c3 non-profit status) and financial reporting. But we’ll have to wait and see to know for sure.

The series is written by [Eric Michaud]. He founded HacDC in Washington, D.C. and Pumping Station: One in Chicago. He also helps others by consulting on startup spaces and embodies a wealth of knowledge on the topic.

If you’re area doesn’t yet have its own Hackerspace read this along with your buddies and see if you’ve got what it takes to get one going.

interesting fact: The hackaday logo is one of the watermarks in the lining of the hackerspace passport.