DIY Gaming Laptop Built Entirely With Desktop Parts

Gaming laptops often tend towards implementing more desktop-like hardware in the pursuit of pure grunt. But what if you were to simply buy desktop hardware yourself, and build your own gaming laptop? That would be very cool, as [Socket Science] demonstrates for us all.

The project began with lofty goals. The plan wasn’t to build something rough and vaguely laptop-like. [Socket Science] wanted to build something of genuine quality, that for all intents and purposes, looked and worked like a proper commercial-grade laptop. Getting to that point took a full 14 months, but the final results are impressive.

Under the hood lies an AMD Ryzen 5 5600X and a XFX Radeon RX6600, hooked into an ITX motherboard with some low-profile RAM sticks. Those components were paired with a thin keyboard, a touchpad, and a portable gaming monitor. Getting all that into a thin laptop case, even a custom one, was no mean feat. Ports had to be cut down to size, weird ribbon cables had to be employed, and heatsinks and coolers had to be rearranged. To say nothing of all the work to 3D print a case that was strong and actually worked!

The full journey is quite the ride. If you want to go right back to the start, you can find part one here.

We’ve seen some builds along these lines before, but seldom few that get anywhere near this level of fit and finish. Oftentimes, it’s that kind of physical polish that is most difficult to achieve. All we can say is “Bravo!” Oh, and… video after the break.

Continue reading “DIY Gaming Laptop Built Entirely With Desktop Parts”

The Long, Slow Demise Of DVD-RAM

While CDs were still fighting for market share against cassettes, and gaming consoles were just starting to switch over to CD from cartridge storage, optical media companies were already thinking ahead. Only two years after the introduction of the original PlayStation, the DVD Forum had introduced the DVD-RAM standard: 2.58 GB per side of a disc in a protective caddy. The killer feature? Essentially unlimited re-writeability. In a DVD drive that supports DVD-RAM, they act more like removable hard drive platters. You can even see hard sectors etched into the media at the time of manufacture, giving DVD-RAM its very recognizable pattern.

At the time, floppy drives were still popular, and CD-ROM drives were increasingly available pre-installed in new computers. Having what amounted to a hard drive platter with a total of 5 GB per disc should have been a killer feature for consumers. Magneto-optical drives were still very expensive, and by 1998 were only 1.3 GB in size. DVD-RAM had the same verify-after-write data integrity feature that magneto-optical drives were known for, but with larger capacity, and after the introduction of 4.7 GB size discs, no caddy was required.

Continue reading “The Long, Slow Demise Of DVD-RAM”

DIY Rabbit R1 Clone Could Be Neat With More Hardware

The Teenage Engineering badging usually appears on some cool gear that almost always costs a great deal of money. One such example is the Rabbit R1, an AI-powered personal assistant that retails for $199. It was also revealed that it’s basically a small device running a simple Android app. That raises the question — could build your own dupe for $20? That’s what [Thomas the Maker] did.

Meet Rappit. It’s basically [Thomas]’s take on an AI friend that doesn’t break the bank. It runs on a Raspberry Pi Zero 2W, which has the benefit of integrated wireless connectivity on board. It’s powered by rechargeable AA batteries or a USB power bank to keep things simple. [Thomas] then wrapped it all up in a cute 3D printed enclosure to give it some charm.

It’s software that makes the Rappit what it is. Rather than including a screen, microphone, or speakers on the device itself, [Thomas] interacts with the Pi-based device via smartphone. It makes it a less convincing dupe of the self-contained Rabbit R1, but the basic concept is the same. [Thomas] can make queries of the Rappit via a simple Android or iOS app he created called “Comfyspace,” and the Rappit responds with the aid of Google’s Gemini AI.

If you’re really trying to duplicate the trend of AI assistants, you really need standalone hardware. To that end, the Rappit design could really benefit from a screen, microphone, speaker, and speech synth. Honestly, though, that would only take you a few hours extra work compared to what [Thomas] has already done here. As it is, [Thomas] could simply throw away the Raspberry Pi and just use the smartphone with Gemini directly, right? But he chose this route of using the smartphone as an interface to keep costs down by minimizing hardware outlay.

If you want a real Rabbit R1, you can order one here. We’ve discussed controversy around the device before, too. Video after the break.

Continue reading “DIY Rabbit R1 Clone Could Be Neat With More Hardware”

RC submarine surfaced in a pool

RC Submarine Build Starts With Plenty Of Research

[Ben]’s a 15-year-old who loves engineering and loves taking on new challenges. He’s made some cool stuff over the years, but the high water mark (no pun intended) has to be this impressively documented remote controlled submarine.

His new build starts off with more research than the actual building. [Ben] spent a ton of time investigating the design of the submarine from its shape, to the propeller system, to the best way to waterproof everything, keeping his sub in tip-top shape. He decides to go with the Russian-style Akula submarine, which is probably the generic look that most of us would think of when we hear the word submarine. He had some interesting thoughts on the propeller system (like the syringe ballast we’ve seen before), and which type of motor to use. In the end, he decided with four pumps that would act essentially as thrusters. fill a chamber with water, allowing the submarine to submerge, or fill with air, making the submarine buoyant, allowing it to resurface.

However, what we found most interesting about his build is how he explains the rationale for all his design decisions and clearly documents his thought process on his project page. We really can’t do [Ben]’s project justice in a short post, so head over to his project page to see it for yourself.

While you’re at it, check out some of these other cool submarine builds that we’ve featured here on Hackaday

A Simple Portable PS4 Build

Building a portable console is hard, right? You have to do lots of wiring, maybe trim a few PCBs, and learn all about the finer points of high-end motherboard design! Or, you could keep it simple. That’s just what [Francesco6n] did when he built this portable PS4.

The aim for this build wasn’t to build the smallest, sleekest, or prettiest portable PS4. It was just to build a functional one that worked. To that end, the guts of the PS4 was installed in a 3D-printed case decorated with the usual square-circle-cross-triangle motif. A 1024×600 Acer Aspire One laptop display was installed in a clamshell configuration to act as the screen for the build. Inside the case is a large GPU-style cooler which helps keep temperatures down. As for power, there’s no need to plug this thing in everywhere you go. Instead, it’s capable of running for up to 90 minutes continuously thanks to a battery pack consisting of eighteen 18650 cells. In a beautiful touch of cross-platform cooperation, an Xbox 360 supply is used to power the thing when mains power is available.

It’s a neat build, and one that doesn’t overcomplicate things. Projects like this are a great way to get your feet wet with portable console hacking, letting you learn the ropes without too much pressure. More pictures after the break.
Continue reading “A Simple Portable PS4 Build”

Hydrogen Generation With Seawater, Aluminum, And… Coffee?

A team at MIT led by [Professor Douglas Hart] has discovered a new, potentially revelatory method for the generation of hydrogen. Using seawater, pure aluminum, and components from coffee grounds, the team was able to generate hydrogen at a not insignificant rate, getting the vast majority of the theoretical yield of hydrogen from the seawater/aluminum mixture. Though the process does use indium and gallium, rare and expensive materials, the process is so far able to recover 90% of the indium-gallium used which can then be recycled into the next batch. Aluminum holds twice as much energy as diesel, and 40x that of Li-Ion batteries. So finding a way to harness that energy could have a huge impact on the amount of fossil fuels burned by humans!

Pure, unoxidized aluminum reacts directly with water to create hydrogen, as well as aluminum oxyhydroxide and aluminum hydroxide. However, any aluminum that has had contact with atmospheric air immediately gets a coating of hard, unreactive aluminum oxide, which does not react in the same way. Another issue is that seawater significantly slows the reaction with pure aluminum. The researchers found that the indium-gallium mix was able to not only allow the reaction to proceed by creating an interface for the water and pure aluminum to react but also coating the aluminum pellets to prevent further oxidization. This worked well, but the resulting reaction was very slow.

Apparently “on a lark” they added coffee grounds. Caffeine had already been known to act as a chelating agent for both aluminum and gallium, and the addition of coffee grounds increased the reaction rate by a huge margin, to the point where it matched the reaction rate of pure aluminum in deionized, pure water. Even with wildly varying concentrations of caffeine, the reaction rate stayed high, and the researchers wanted to find out specifically which part of the caffeine molecule was responsible. It turned out to be imidazole, which is a readily available organic compound. The issue was balancing the amount of caffeine or imidazole added versus the gallium-indium recovery rate — too much caffeine or imidazole would drastically reduce the recoverable amount of gallium-indium.

Continue reading “Hydrogen Generation With Seawater, Aluminum, And… Coffee?”

Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel

Time zones are a complicated but necessary evil. Humans like the numbers on the clock to vaguely match up with what the sun is doing in the sky outside. To that end, different places in the world keep different time. If you want to keep track of them in a very pretty fashion, you might consider building a fancy and beautiful World Clock like [Karikuri] did. 

The design is based around a globe motif, mimicking the world itself. Only, on the surface of the globe, there are clock faces instead of individual countries. Each clock runs to its own time, directed by a complicated assemblage of 3D-printed gears. Mechanical drive is sent to the globe from a power base, which itself carries a mechanical seven-segment display. This too can display the time for different regions by using the controls below. It’s also useful for setting the clock to the correct time.

It’s a little difficult to follow the build if you don’t speak Japanese. However, quality subtitles are available in English if you choose to enable them.

We’ve seen [Karikuri’s] work before. We’ve also featured a great many world clocks over the years, including this particularly beautiful example that tracks night and day. Just don’t expect it to keep track of moon time. Video after the break.

Continue reading “Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel”