A Dial Phone SIPs Asterisk

An endless source of amusement for those of advancing years can come from handing a rotary phone to a teenager and asking them to dial a number with it. It’s rare for them to be stumped by a piece of technology, after all. [Mnutt]’s 4-year-old son had no such problems when he saw rotary phones at an art exhibition, so what was a parent to do but wire the phone to an Asterisk PBX with shortcut numbers for calls to family and such essential services as a joke line, MTA status, or even a K-pop song.

It’s possible to hook up a pulse dial phone with a SLIC module and a microcontroller, but in this case, a Grandstream SIP box did the trick. These are all-in-one devices that implement a SIP client with a physical connection, and older ones will talk to pulse dialers as well as the more usual tone dialing phones. The phone in question is a vintage American model. Writing this from Europe we were surprised to find a little simpler inside than its transatlantic counterparts of the same era.

An Asterisk install on a Raspberry Pi completed the project, and thus it became a matter of software configuration. It’s a useful run-through for Asterisk dilettantes, even if you haven’t got a 4-year-old. Perhaps you have an old payphone or two!

An ASIC For A Secret File

Some time over a decade ago, the arrival of inexpensive PCB fabrication revolutionised the creation of custom electronics on a budget. It’s now normal for even the smallest projects we feature here to have a professional PCB, which for those of us who started by etching their own with ferric chloride is nothing short of a miracle. When it comes to the ultimate step in custom electronics of doing the same for integrated circuits though, it’s fair to say that this particular art is in its infancy. The TinyTapeout project is a collaborative effort in which multiple designers have the chance to make their own ASIC as a single tile on a chip along others, and [Bitluni] had the chance to participate. His ASIC? A secret file which could be read through his ESP32 to VGA board.

The video below the break then is both the tale of the secret file project, and that of TinyTapeout itself, which is a clever design involving an on-board microcontroller that selects the tile and manages the bus. This revision is Tiny Tapeout 3, which includes 249 tiles of contributor-generated circuitry holding a diverse array of projects.

The secret file itself is a motion GIF, compressed down until the point at which it will just fit on a tile. We’ll preserve the fun by not reveling what it us, but you probably won’t be surprised when you see it in the video.

We’ve featured TinyTapeout more then once, not least when [Matt Venn] gave a talk about it for Supercon 2022.

Continue reading “An ASIC For A Secret File”

Concrete Clears Its Own Snow

Humans are not creatures well suited to cold environments. Without a large amount of effort to provide clothing, homes, and food to areas with substantial winters, very few of us would survive. The same is true of a lot of our infrastructure since things like ice, frost heave, and large temperature swings can all negatively impact buildings, roadways, and other structures. A team at Drexel University in Pennsylvania has created a type of concrete they hope might solve some issues with the material in cold climates.

Specifically when it comes to sidewalks and roadways, traditional methods of snow and ice removal such as plowing and salting are generally damaging to the surface material, with salting additionally being damaging to vehicles. Freeze-thaw cycles aren’t kind to these surfaces either. This concrete, on the other hand, contains a low-temperature liquid paraffin which releases heat when it has a phase change, from a liquid to a solid. By incorporating the material into the concrete, it can warm itself as temperatures drop, maintaining a temperature above freezing to melt ice and snow. The warming effect isn’t indefinite, but lasts a significant amount of time during testing.

Continue reading “Concrete Clears Its Own Snow”

Fail Of The Week: A Potentially Lethal Tattoo Removal Laser Power Supply

Caveat emptor is good advice in general, but in the wilds of eBay, being careful with what you buy could be life-saving. To wit, we present [Les Wright]’s teardown and very ginger power-up of an eBay tattoo-removal laser power supply.

Given that [Les] spent all of around $100 on this widowmaker, we’re pretty sure he knew what he was getting himself into. But he likely wasn’t quite prepared for the scale of the sketchiness this thing would exhibit. The deficiencies are almost too many to number, starting with the enclosure, which is not only made completely of plastic but assembled from individual sheets of flat plastic stock that show signs of being glued together by hand. Even the cooling water tank inside the case is pieced together this way, which probably led to the leaks that corroded the PCBs. Another assembly gem is the pair of screws the big energy storage capacitor is jammed under, presumably to hold it in place — because nothing says quality like a BOM that can’t spring for a couple of cable ties. Click through the break to read more and see the video.

Continue reading “Fail Of The Week: A Potentially Lethal Tattoo Removal Laser Power Supply”

Obfuscated C 8080 Emulator Ported

[Oscar] is no stranger to writing hard-to-read C code. While most of us do that by accident, there are those who strive to write the most unreadable code and enter it in the IOCCC — the International Obfuscated C Code Contest. One of his winning entries was a single C function that emulates an 8080. With a few support files, the plucky little emulator will run CP/M.

The emulator won best in show, but that was in 2006. Things have changed a bit and [Oscar] has updated the code so that you can continue to try it if you want to give yourself a headache reading code. The portability isn’t a CPU issue — modern CPUs will happily run code from 2006. The problem is the compiler and operating system. Compilers are much stricter these days, and Linux needs a little extra coaxing to give access to the input stream the way the faux computer needs it.

Continue reading “Obfuscated C 8080 Emulator Ported”

It’s Never Been Easier To Build A WiFi-Controlled RC Car

Today, wireless-enabled microcontrollers are everywhere and can be had for just a few bucks. You can use them to build all kinds of connected projects more cheaply than ever before. [ROBO HUB] demonstrates this well with an incredibly simple WiFi-controlled RC car build.

The build is based around an NodeMCU ESP8266 microcontroller, paired with an L293D motor driver. This lets the microcontroller drive brushed DC motors for differential drive. Power is courtesy of three 18650 lithium-ion batteries. These parts are assembled into a 3D-printed car of sorts with four wheels. The drivetrain is rather odd, with gear motors installed on the two front wheels, and simple brushed DC motors installed on the two rear wheels. The motors on each side are paired together so the vehicle has tank-style steering.

Meanwhile, the ESP8266 is programmed so it can be controlled via a smartphone app. The touchscreen controls are not as elegant as toy RC cars of years past, but it’s pretty good for a cheap DIY build.

It’s a fairly simple project and one that any high-school student could follow along to learn something. Projects like these can be a great way to learn about everything from mechanics to electronics and even basic programming. It may not be complicated, but that makes it a great learning tool. We see a ton of projects like this on the regular, and every time they’re built, somebody is picking up some new skills.

We’ve been talking about WiFi-controlled RC cars for a long time. Way back when it was nowhere near this easy. Video after the break. Continue reading “It’s Never Been Easier To Build A WiFi-Controlled RC Car”

Interactive Cake Takes Your Picture

[Abigail] is a confectionery roboticist, and [Hazal] is a developer advocate at a robotics company. The two met recently and decided to collaborate on a smart cake, with amusing results.

The resulting cake not only looks like a camera it also has a camera inside. When the camera detects people in its field of view, a NeoPixel is lit up in green to signal it’s spotted something. If you so desire, you can then hit a button and the cakera (cake-camera, keep up) will take your photo.

The cake itself looks to be a sponge of some sort with fondant used to create the camera housing and a surround for the preview screen. Inside the cake is a standard photo-booth style setup built with a Raspberry Pi. The Pi is responsible for taking photos with a USB cam. It does this when instructed via an arcade button acting as the shutter release. After taking a photo, the Pi prints out a receipt with an Adafruit thermal printer. This provides the user a number they can use to receive their photo afterward.

We’ve seen some neat cakes before, too. If you’ve been hacking on cakes, either edible or theoretical, we might just want to know more. Drop us a line!