the full charger with gas tank and engine

Charge Your Apple With Apples

When you think of ethanol, you might think of it as a type of alcohol, not alcohol itself. However, in reality, it is the primary ingredient in adult beverages. Which means humans have gotten quite good at making it, as we’ve been doing for a long time. With this in mind, [Sam Barker] decided to make ethanol out of apples to power a small engine to charge his phone.

The steps for making pure ethanol is quite similar to making alcoholic cider. A friend of [Sam’s] had an orchard and a surplus of apples, so [Sam] boiled them down and stored the mush in jugs. He added activated dry yeast to start the fermentation process. A dry lock allowed the CO2 gas that was being created to escape. Over a few weeks, the yeast converted all the sugar into ethanol and gas. In the meantime, [Sam] sourced a chainsaw and adapted the engine to run on ethanol, as ethanol needs to run richer than gasoline. The video below the break tells the story.

Continue reading “Charge Your Apple With Apples”

Will A Kettle Filled With Alcohol Boil Dry?

The average home kettle is set up to switch off automatically when water reaches its boiling point. But would a kettle filled with alcohol, which has a significantly lower boiling point, actually turn off? [Steve Mould] set out to find out.

The prediction was that a kettle full of 40% strength vodka would boil dry, as the vodka would evaporate before it actually got to a hot enough temperature to cause the kettle’s cutout mechanism to kick in. The experiment was done outside to minimise the dangers from the ethanol vapor. As it turns out, the vapor from the boiling vodka is about 80% ethanol and just 20% water, so eventually the mixture left in the kettle is mostly water and it boils hot enough to trigger the cutout mechanism.

However, the experiment doesn’t end there. Trying again with 99% ethanol, when the fluid started boiling, the kettle switched off even more quickly. So what’s going on?

The kettle in question uses a bimetallic strip, which trips the switch off in the base of the kettle when it gets too hot. There’s also a tube inside the kettle that carries vapor from the internal cavity and lets it pass over the bimetallic strip. When the liquid inside the kettle boils, it forces hot vapor through the tube, out of the kettle and over the bimetallic strip.

This strip triggers at a temperature significantly lower than the boiling point of water; indeed, as long as the liquid in the kettle is fairly hot and is boiling enough to force vapor out the tube, the kettle will switch off. [Steve] points out that it’s a good mechanism, as this mechanism allows the kettle to respond to boiling itself, rather than the arbitrary 100 C point which water technically only boils at when one is at sea level.

It’s an interesting look at a safety system baked into something many of us use every day without even thinking. It’s not the first time we’ve seen [Steve] dive deep into the world of tea-making apparatus, either. Video after the break.

Continue reading “Will A Kettle Filled With Alcohol Boil Dry?”

How To Get Into Cars: E85 Fuel

If you’ve spent any time around the modified car scene in the last few years, you’ve probably heard about E85. Maybe you’ve even noticed a sweet smell emanating from the pitlane, or heard people cracking jokes about “corn juice.”

The blended fuel, which combines alcohol and traditional gasoline, can have significant performance benefits if used properly. Today, we’ll explore what those are, and how you can set your ride up to run on E85.

Continue reading “How To Get Into Cars: E85 Fuel”

That’s Not Beer! A Biofuel Fermentation Controller Project

biofuel-fermentation-controller

Any home brewer will recognize the setup pictured above as a temperature controlled fermentation chamber. They wouldn’t be wrong either. But you’re not going to drink what results. This project is aimed at providing a temperature controlled environment for fermenting biofuel.

[Benjamin Havey] and [Michael Abed] built the controller as their final project in his microprocessor class. The idea is to monitor and control the mini-refrigerator so that the strain of Saccharomyces Cerevisiae yeast produce as much ethanol as possible. An MSP430 microcontroller was used. It monitors a thermister with its analog to digital converter and drives a solid state relay to switch mains power to the fridge. At 41 degrees Fahrenheit this is down below what most lager yeasts want (which is usually in the low fifties). But the nice thing about using a microcontroller is you can set a schedule with different stages if you find a program that gives the yeast the best environment but requires more than one temperature level.

Who knew all that beer making was getting you ready to produce alternative fuels?