M.2 For Hackers – Expand Your Laptop

You’ve seen M.2 cards in modern laptops already. If you’re buying an SSD today, it’s most likely an M.2 one. Many of our laptops contain M.2 WiFi cards, the consumer-oriented WWAN cards now come in M.2, and every now and then we see M.2 cards that defy our expectations. Nowadays, using M.2 is one of the most viable ways for adding new features to your laptop. I have found that the M.2 standard is quite accessible and also very hackable, and I would like to demonstrate that to you.

If you ever searched the Web trying to understand what makes M.2 tick, you might’ve found one of the many confusing articles which just transcribe stuff out of the M.2 specification PDF, and make things look more complicated than they actually are. Let’s instead look at M.2 real-world use. Today, I’ll show you the M.2 devices you will encounter in the wild, and teach you what you need to know to make use of them. In part 2, I will show you how to build your own M.2 cards and card-accepting devices, too!

Well Thought-Out, Mostly

You can genuinely appreciate the M.2 standard once you start looking into it, especially if you have worked with mPCIe devices for some amount of time. mPCIe is what we’ve been using for all these years, and it gradually became a mish-mash of hardly-compatible pinouts. As manufacturers thought up all kinds of devices they could embed, you’d find hacks like mSATA and WWAN coexistence extensions, and the lack of standardization is noticeable in things like mPCIe WWAN modems as soon as you need something like UART or PCM. The M.2 specification, thankfully, accounted for all of these lessons.

Continue reading “M.2 For Hackers – Expand Your Laptop”

Digital Kitchen Spoon Makes Weighing Your Ingredients A Snap

There seem to be two camps when it comes to recipes: those based on volume-based measurements, and those based on the weight of ingredients. Gravimetric measurements have the advantage of better accuracy, but at the price of not being able to quickly scoop out a bit of this and a dash of that. It would be nice to get the convenience of volumetric measurements with the accuracy of weighing your ingredients, wouldn’t it?

It would, and that’s just what [Penguin DIY] did with this digital kitchen spoon scale. The build started with, perhaps not surprisingly, a large mixing spoon and a very small kitchen scale. The bowl of the spoon got lopped off the handle and attached to the strain gauge, which was removed from the scale along with its LCD display and circuit board. To hold everything, a somewhat stocky handle was fabricated from epoxy resin sandwiched between aluminum bolsters. Compartments for the original electronics parts, as well as a LiPo battery and USB charger module, were carved out of the resin block, and the electronics were mounted so that the display and controls are easily accessible. The video below shows the build as well as the spoon-scale in action in the kitchen.

We think this is not only a great idea but a fantastic execution. The black epoxy and aluminum look amazing together on the handle, almost like a commercial product. And sure, it would have been easy enough to build a scale from scratch — heck, you might even be able to do away with the strain gauge — but tearing apart an existing scale seems like the right move here.

Continue reading “Digital Kitchen Spoon Makes Weighing Your Ingredients A Snap”

Computing Fluidly

Computers come in many forms, depending on your definition. We’ve seen computers and computer gates built out of things as diverse as marbles, relays, and — of course — transistors. However, there are logic gate systems that use a property of moving fluids to form logic gates and a bistable element. That’s all the pieces you need to build a working computer.

It may sound far-fetched, but there have been general-purpose computers built using this technology. It is also used in specialized applications where fluids are already flowing, like shower heads, automotive transmissions, and in places where electronics are prone to misbehave. Many think the field will see a resurgence when we need to build logic at the molecular level for nanotech applications, too.

Basics

In its most basic form, a fluidic gate uses flow as a logic 1 and less flow to be a logic 0. Merging two streams together provides an OR gate. Using a supply stream that you can divert with a control stream provides a NOT function. Given enough inverters and OR gates, you can build everything else.

Continue reading “Computing Fluidly”

The WiFi Pumpkin Is The WiFi Pineapple We Have At Home

While networking was once all about the Cat 5 cables and hubs and routers, now most of us connect regularly in a wireless manner. Just like regular networks, wireless networks need auditing, and [Brains933] decided to whip up a tool for just that, nicknaming it the PumpkinPI_3.

The build is inspired by the WiFi Pineapple, which is a popular commercial pentesting tool. It runs the WiFi Pumpkin framework which allows the user to run a variety of attacks on a given wireless network. Among other features, it can act as a rogue access point, run man-in-the-middle attacks, and even spoof Windows updates if so desired.

In this case, [Brains933] grabbed a Raspberry Pi Zero W to run the framework. It was stuffed in a case with a Alfa Network AWUS036NHA wireless card due to its ability to run in monitoring mode — a capability required by some of the more advanced tools. It runs on a rechargeable LiPo battery for portability, and can be fitted with a small screen for ease of operation.

It should prove to be a useful tool for investigating wireless security on the go. Alternatively, you can go even leaner, running attacks off an ESP32.

Continue reading “The WiFi Pumpkin Is The WiFi Pineapple We Have At Home”

Comparing Solar Energy Harvesters

There doesn’t have to be much more to setting up a simple solar panel installation than connecting the panel to a battery. Of course we would at least recommend the use of a battery management system or charge controller to avoid damaging the battery, although in a pinch it’s not always strictly necessary. But these simple systems leave a lot on the table, and most people with any sizable amount of solar panels tend to use a maximum power point tracking (MPPT) system to increase the yield of the panels. For a really tiny installation like [Salvatore] has, you’ll want to take a look at a similar system known as a solar energy harvester.

[Salvatore] is planning to use an energy harvester at his small weather station, which is currently powered by an LDO regulator and a small solar cell. While this is fairly energy efficient, the energy harvesters that he is testing with this build will go far beyond what an LDO is capable of. The circuit actually has two energy harvesters built onto it which allows him to test the capabilities of both before he makes a decision for his weather station. Every amount of energy is critical when using the cell he has on hand, which easily fits in the palm of one’s hand.

The testing of this module isn’t complete yet, but he does have two working prototypes to test in future videos to see which one truly performs the best. For a project of this size, this is a great way to get around the problem of supplying a small amount of power to something remote. For a larger solar panel installation, you’ll definitely want to build an MPPT system though.

Continue reading “Comparing Solar Energy Harvesters”

a kinetic bar framework mounted on a wooden base made of 3d printed bars of alternative black and grey color, each joined with m3 bolts and nuts

Kinetic Cyclic Scissors

[Henry Segerman] and [Kyle VanDeventer] merge math and mechanics to create a kinetic cyclic scissors sculpture out of 3D printed bars adjoined together with M3 bolts and nuts.

a kinetic bar framework with 3d printed bars of alternative black and grey color, each joined with m3 bolts and nuts being held by a person at two points with a quadrilateral tiling overlay

The kinetic sculpture can be thought of as a part of an infinite tiling of self similar quadrilaterals in the plane. The tiling of the plane by these self similar quadrilaterals can be realized as a framework by joining the diagonal points of each quadrilateral with bars. The basic question [Henry] and [Kyle] wanted to answer was under what conditions can the realized bar framework of a subsection of the tiling be made to move. Surprisingly, when the quadrilateral is a parallelogram, like in a scissor lift, or “cyclic”, when the endpoints lie on a circle, the bar framework can move. Tweaking the ratios of the middle lengths in a cyclic configuration leads to different types of rotational symmetry that can be achieved as the structure folds in on itself.

[Henry] and [Kyle] go into more detail in their Bridges Conference paper, with derivations and further discussions about the symmetry induced by adjusting the constraints. The details are light on the actual kinetic sculpture featured in the video but the bar framework was chosen to have a mirror type of symmetry with a motor attached to one of the central, lower bars to drive the movement of the sculpture.

The bar framework is available for download for anyone wanting to 3D print or laser cut their own. Bar frameworks are useful ideas and we’ve seen them used in art sculptures to strandbeests, so it’s great to see further explorations in this space.

Video after the break!

Continue reading “Kinetic Cyclic Scissors”

Cat9 And LASH Want To Change Your Linux Command Line

It is no secret that to be a true Linux power user you have to deal with the command line. Many people actually prefer to use the command line. However, the shell — the program that provides that command line — is mired in a back history which means it has to work with existing things no matter how modern it tries to be. However, a new set of projects wants to replace most of your user interface stack starting with the shell. At the top of that stack is Cat9 which is technically a shell, but not in the way you probably imagine a shell.

A traditional shell lets you run programs one at a time, feed them input, and observe their output. Sure, you can stash the output away for later use. You can run programs in the background or in parallel, but that requires special attention. In Cat9, everything is asynchronous and results stay around until you deliberately drop them. It is trivial to grab data from a previous command or, for example, to switch to a directory that was in use by an earlier task.

Continue reading “Cat9 And LASH Want To Change Your Linux Command Line”