A Stackable Planetary Gearbox You Can Print At Home

In one little corner of YouTube is a small but vibrant community sharing videos about gearboxes of their own design, particularly those with very high ratios or other quirky features. Adherents of the subculture are known as gearheads, and [Let’s Print] is among them. His latest creation is a 3D printed planetary gearbox design with a focus on easy assembly and versatile ratio choice. (Video, embedded below.)

The gearbox came about as [Let’s Print] grew weary of designing bespoke geartrains for each of their individual projects.  The planetary design they landed on has the benefit of being stackable, with each reduction block fitted adding a 1:3 stepdown to the train.

For testing purposes, four stages were ganged up for a total reduction ratio of 1:81. The resulting gearbox was able to lift 40 kg before its output coupler failed, no mean feat for some plastic squirted out of a hot nozzle. It’s a common problem with huge ratio gearboxes made out of plastic – often, the very components of the gearbox can’t hold up to the huge loads generated.

Regardless of the limitations of the material, we’re sure the gearbox will prove useful in future projects from [Let’s Print]. We’ve seen other tough 3D printed gearbox builds before too, such as this anvil-lifter from the aptly-named [Gear Down For What]. Dive into the online gearbox subculture yourself.

Continue reading “A Stackable Planetary Gearbox You Can Print At Home”

3D Printing Restores Bandsaw

A great addition to a home shop is a bandsaw, but when [Design Prototype Test] got a well-used one, he found it wasn’t in very good shape. The previous owner put in an underpowered motor and made some modifications to accommodate the odd-sized blade. Luckily, 3D printing allowed him to restore the old saw to good working order.

There were several 3D printed additions. A pulley, a strain relief, and even an emergency stop switch. Honestly, none of this stuff was something you couldn’t buy, but as he points out, it was cheaper and faster than shipping things in from China. He did wind up replacing the initial pulley with a commercial variant and he explains why.

Continue reading “3D Printing Restores Bandsaw”

Less Stinky Resin Two Ways

After watching [Uncle Jessy’s] video about soy-based 3D printing resin from Elegoo and their miniature air purifiers, we couldn’t decide if the resin doesn’t smell as bad as some other resins or if the air purifier works wonders. Maybe it is a bit of both.

We’ve used Eryone super low odor resin and it has less smell than, say, paint. It sounds like the Elegoo is similar. However, we are always suspicious of claims that any resin is really made with natural ingredients. As [Brent], who apparently has a PhD in chemistry, pointed out, AnyCubic Eco resin makes similar claims but is likely only partially made from soy. Sure, a little less than half is soy-based, but then there’s the other half. Still, we suppose it is better than nothing. That video (also below) is worth watching if you ever wondered why resin solidifies under UV light or what a monomer is.

Continue reading “Less Stinky Resin Two Ways”

Hybrid Rocket Engine Combines Ceramic Aerospike With 3D Printed Fuel

[Integza] has worked hard over the last year, crafting a variety of types of rocket and jet engine, primarily using 3D printed parts. Due to the weaknesses of plastic, all of which conflict with the general material requirements for an engine that gets hot, he has had less thrust and more meltdowns than he would have liked. Undeterred, he presses on, now with a hybrid rocket aerospike design. The goal? Actually generating some thrust for once!

The latest project makes the most of what [Integza] has learned. The aerospike nozzle is 3D printed, but out of a special thick ceramic-loaded resin, using a Bison 1000 DLP printer. This allowed [Integza] to print thicker ceramic parts which shrunk less when placed in a kiln, thus negating the cracking experienced with his earlier work. The new nozzle is paired with a steel rocket casing to help contain combustion gases, and the rocket fuel is 3D printed ASA plastic. 3D printing the fuel is particularly cool, as it allows for easy experimentation with grain shape to tune thrust profiles.

With the oxygen pumping, the new design produces some thrust, though [Integza] is yet to instrument the test platform to actually measure results. While the nozzles are still failing over a short period of time, the test burns were far less explosive – and far more propulsive – than his previous efforts. We look forward to further development, and hope [Integza’s] designs one day soar high into the sky. Video after the break.

Continue reading “Hybrid Rocket Engine Combines Ceramic Aerospike With 3D Printed Fuel”

3D Printed Transistor Goes Green

We’ll be honest, we were more excited by Duke University’s announcement that they’d used carbon-based inks to 3D print a transistor than we were by their assertion that it was recyclable. Not that recyclability is a bad thing, of course. But we would imagine that any carbon ink on a paper-like substrate will fit in the same category. In this case, the team developed an ink from wood called nanocelluose.

As a material, nanocellulose is nothing new. The breakthrough was preparing it in an ink formulation. The researchers developed a method for suspending crystals of nanocellulose that can work as an insulator in the printed transistors. Using the three inks at room temperature, an inkjet-like printer can produce transistors that were functioning six months after printing.

Continue reading “3D Printed Transistor Goes Green”

Testing 3D Printed Worm Gears

Worm gears are great if you have a low-speed, high-torque application in which you don’t need to backdrive. [Let’s Print] decided to see if they could print their own worm gear drives that would actually be usable in practice. The testing is enlightening for anyone looking to use 3D printed gearsets. (Video, embedded below.)

The testing involved printing worm gears on an FDM machine, in a variety of positions on the print bed in order to determine the impact of layer orientations on performance. Materials used were ABS, PLA and PETG. Testing conditions involved running a paired worm gear and worm wheel at various rotational speeds to determine if the plastic parts would heat up or otherwise fail when running.

The major upshot of the testing was that, unlubricated, gears in each material failed in under two minutes at 8,000 RPM. However, with adequate lubrication from a plastic-safe grease, each gearset was able to run for over ten minutes at 12,000 RPM. This makes sense, given the high friction typical in worm gear designs. However, it does bear noting that there was little to no load placed on the gear train. We’d love to see the testing done again with the drive doing some real work.

It also bears noting that worm drives typically don’t run at 12,000 RPM, but hey – it’s actually quite fun to watch. We’ve featured some 3D printed gearboxes before too, pulling off some impressive feats. Video after the break.

Continue reading “Testing 3D Printed Worm Gears”

DIN Rails For… Everything

Cross-section of a 35mm top hat DIN rail.

One of the great things about the Internet is it lets people find out what other people are doing even if they normally wouldn’t have much exposure to each other. For example, in some businesses DIN rails are a part of everyday life. But for a long time, they were not very common in hobby electronics. Although rails are cheap, boxes for rails aren’t always easy or cheap to obtain, but 3D printing offers a solution for that.

So while the industrial world has been using these handy rails for decades, we are starting to see hobby projects incorporate them more often and people like [Makers Mashup] are discovering them and finding ways to use them in projects and demonstrating them in this video, also embedded below.

If you haven’t encountered them yet, DIN rails are a strip of metal, bent into a particular shape with the purpose of mounting equipment like circuit breakers. A typical rail is 35 mm wide and has a hat-like cross-section which leads to the name “top hat” rail. A 25 mm channel lets you hide wiring and the surface has holes to allow you to mount the rail to a wall or a cabinet. These are sometimes called type O or type Ω rails or sections.

There are other profiles, too. A C-rail is shaped like a letter C and you can guess what a G section looks like, too. Rails do come in different heights, as well, but the 35 mm is overwhelmingly common. However, there are 15 mm rails and 75 mm rails, too.

Continue reading “DIN Rails For… Everything”