Wire Wrap Odyssey: A 7400-series Homebrew 8-bit Computer

The Wire Wrap Odyssey's first Hello World from the CPU module, here hooked up to a logic analyzer in July of 2020. (Credit: Paul Krizak)
The Wire Wrap Odyssey’s first Hello World from the CPU module, here hooked up to a logic analyzer in July of 2020. (Credit: Paul Krizak)

As part of his computer science curriculum at Texas A&M University in the early 2000s, [Paul Krizak] took a computer architecture course on the basics of their functioning. This and being exposed to dozens of homebuilt computer projects inspired him to begin building his own 8-bit computer in 2010, which eventually grew into the Wire Wrap Odyssey. This name covers both the primary construction method chosen around 2019 in the form of wire-wrapped connections, as well the harrowing journey to reach this point with a functioning computer system despite many choices and setbacks.

The Odyssey CPU is an 8-bit microcoded design with 16-bit address bus, using mostly 74HC-series logic. A VGA graphics card is also part of the design, which can output a 640×480 text display, with character glyphs read from the system ROM (32 kB AT28C256). As for the RAM, this is an extravagant 32 kB dual-port SRAM (Renesas 7007), which also allows both the CPU and video card to use the same SRAM. Currently the system has four peripherals: a PS/2 keyboard controller, an RTC and timer (DS1511Y+), 82C52 UART and 1 MB of extended RAM, but an ATA port and parallel port are in development.

Perhaps the most impressive part about this product is the level of documentation, from the early stages including paper doodles to the current state of the system, including the GitHub repository for the software. [Paul] was also an exhibitor at the Vintage Computing Festival (VCF) SoCal recently with his Wire Wrap Odyssey, where he was able to show off the progress so far. Next year he hopes to visit VCF SoCal again, with the remaining planned peripherals implemented.

Classic Calculator Goes RPN, With New Brain

In the era of the smartphone, an electronic calculator may seem a bit old-hat. But they continue to hold a fascination in our community, both when used for their original purpose, and as objects for hardware hacking in their own right. After their first few years when they were a rare and exclusive gadget, they were manufactured in such huge numbers as to be readily available for the curious hacker. [Suikan] has taken one of these plentiful models and done something special for it, creating a new mainboard, and a firmware which transforms it into a reverse Polish, or RPN, scientific calculator.

The Sharp EL210 and EL215 were ubiquitous early-1980s calculators without scientific functions, and with a VFD display. We remember them being common during our schooldays, and they and similar models can still be found on a trawl through thrift stores.

On the board is one of the STM32 microcontrollers and a Maxim VFD driver, and fitting it is simply a case of soldering the Sharp’s VFD to it, placing it in the calculator, and attaching the keyboard. The firmware meanwhile uses the orange C key from the original calculator as a function key, alternating between standard and scientific operations.

If you’re curious about RPN, we’ve taken a look at it here in the past.

The Latest Advancements In Portable N64 Modding

[Chris Downing] has been in the mod scene a long time, and his 5th GeN64 Portable is his most modern portable Nintendo 64 yet. The new build has an improved form factor, makes smart use of 3D printing and CNC cutting, efficiently uses PCBs to reduce wiring, and incorporates a battery level indicator. That last feature is a real quality of life improvement, nicely complementing the ability to charge over USB-C.

What’s interesting about builds like this is that it’s all about the execution. The basic parts required to mod a classic games console into a portable unit are pretty well understood, and off-the-shelf modules like button assemblies exist to make the job far easier than it was back in the day when all had to be done from scratch. We’ve admired [Chris Downing]’s previous builds, and what differentiates one mod from another really comes down to layout and execution, and that’s where the 5th GeN64 Portable shines. Continue reading “The Latest Advancements In Portable N64 Modding”

Pi Pico Enhances RadioShack Computer Kit

While most of us now remember Radio Shack as a store that tried to force us to buy batteries and cell phones whenever we went to buy a few transistors and other circuit components, for a time it was an innovative and valuable store for electronics enthusiasts before it began its long demise. Among other electronics and radio parts and kits there were even a few DIY microcomputers, and even though it’s a bit of an antique now a Raspberry Pi Pico is just the thing to modernize this Radio Shack vintage microcomputer kit from the mid 80s.

The microcomputer kit itself is built around the 4-bit Texas Instruments TMS1100, one of the first mass-produced microcontrollers. The kit makes the processor’s functionality more readily available to the user, with a keypad and various switches for programming and a number of status LEDs to monitor its state. The Pi Pico comes into the equation programmed to act as a digital clock with an LED display to drive the antique computer. The Pi then sends a switching pulse through a relay to the microcomputer, which is programmed as a binary counter.

While the microcomputer isn’t going to win any speed or processing power anytime soon, especially with its clock signal coming from a slow relay module, the computer itself is still fulfilling its purpose as an educational tool despite being nearly four decades old. With the slow clock speeds it’s much more intuitive how the computer is stepping through its tasks, and the modern Pi Pico helps it with its tasks quite well. Relays on their own can be a substitute for the entire microcontroller as well, like this computer which has a satisfying mechanical noise when it’s running a program.

Continue reading “Pi Pico Enhances RadioShack Computer Kit”

A 1960s PLC Gives Up Its Secrets

When it comes to process automation, the go-to part in most industrial settings is a Programmable Logic Controller, or PLC. These specialized computers will have a modern microcontroller running the show, but surprisingly the way they are programmed still has echoes of a time before electronic PLCs when such control would have been electromechanical.

[Thomas Scherrer] has an interesting design to tear down, it’s a Siemens electromechanical motor controller from the early 1960s. It’s not quite the huge banks of relays which would have made a fully-blown PLC back in those times, but it’s a half-way house with some simple programming capability in the form of several channels of adjustable time delay.

We’re partly sad to see this unit being subjected to a destructive teardown, but nevertheless it’s interesting to see all those very period components. The current sensor has a mechanism similar to a moving coil meter, and the four-channel timer is a mechanical sequencer with four adjustable cam-driven switches. We’re not sure we would be cracking open selenium rectifiers with such nonchalance though.

These units were built to a very high quality indeed, and though it’s obvious this one comes from a decommissioned installation it’s not beyond possibility to think there might be some of them still doing their job over six decades after manufacture. Have any of you seen one of these or something like it in operation recently? Let us know in the comments. Meanwhile the video is below the break.

Continue reading “A 1960s PLC Gives Up Its Secrets”

Simple Magnetic Levitator

[Stoppi] always has exciting projects and, as you can see in the video below, the latest one is a very simple magnetic levitator design. The design is classic and simple: a 5 V regulator IC, a Hall effect sensor, a 741 op amp, and a MOSFET to turn the electromagnet on and off.

Sure, there are a few passive components and a diode, too, but nothing exotic. The sensor normally presents 2.5 V of output. The voltage rises or drops depending on the polarity of the magnetic field. The stronger the field, the more the voltage changes away from the 2.5 V center.

The op amp acts as a comparator with a potentiometer setting the trip point. As the ball moves up towards the coil, the voltage increases, triggering the comparator, which turns off the FET. With no current through the coil, there’s no more electromagnet, and the ball starts to fall.

Of course, as the ball falls, the voltage from the sensor also drops, and this eventually turns on the electromagnet. The ball eventually reaches a relatively stable position.

This is one of those cases where a simple analog circuit might work better than a digital one. Or make it hard on yourself and use an FPGA.

Continue reading “Simple Magnetic Levitator”

Arctic Adventures With A Data General Nova II — The Equipment

As I walked into the huge high bay that was to be my part-time office for the next couple of years, I was greeted by all manner of abandoned equipment haphazardly scattered around the room. As I later learned, this place was a graveyard for old research projects, cast aside to be later gutted for parts or forgotten entirely. This was my first day on the job as a co-op student at the Georgia Tech Engineering Experiment Station (EES, since renamed to GTRI). The engineer who gave me the orientation tour that day pointed to a dusty electronic rack in one corner of the room. Steve said my job would be to bring that old minicomputer back to life. Once running, I would operate it as directed by the radar researchers and scientists in our group. Thus began a journey that resulted in an Arctic adventure two years later.

The Equipment

The computer in question was a Data General (DG) mini computer. DG was founded by former Digital Equipment Corporation (DEC) employees in the 1960s. They introduced the 16-bit Nova computer in 1969 to compete with DEC’s PDP-8. I was gawking at a fully-equipped Nova 2 system which had been introduced in 1975. This machine and its accessories occupied two full racks, with an adjacent printer and a table with a terminal and pen plotter. There was little to no documentation. Just to turn it on, I had to pester engineers until I found one who could teach me the necessary front-panel switch incantation to boot it up. Continue reading “Arctic Adventures With A Data General Nova II — The Equipment”