Game Of Life Clock

GOLclockOperating

[Alex] wanted to make an LED clock. But simply making an LED array clock was far too easy — so he decided to make it follow some interesting rules…

Ever heard of John Conway’s Game of Life? It’s quite simple — there are four rules.

  1. Any live cell with fewer than two live neighbours dies, as if caused by under-population.
  2. Any live cell with two or three live neighbours lives on to the next generation.
  3. Any live cell with more than three live neighbours dies, as if by overcrowding.
  4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
    [from Wikipedia]

So [Alex] decided to make his clock LED matrix follow these rules, with lit pixels representing life. Every minute, on the minute, the time is displayed. But as soon as it is displayed, the rules take over, and the display disintegrates, following the rules of the Game of Life. It makes for an very interesting display that’s just waiting to be scaled up to a larger size!

He’s done a great job writing it up on his blog, and has included his code as well — so if you’re so inclined, take a look! If not, stick around after the break to see the clock in action.

Continue reading “Game Of Life Clock”

The Greenest Wall-Powered Clock

clock

Some of the most inefficient appliances in the home are AC mains-powered clocks. You can’t exactly turn them off and they use a whole lot of energy considering how often they’re looked at. [t3andy] came up with a great low power AC Mains clock that is only on 3% of the time. As a neat bonus, it also looks really, really cool.

[t3andy] is using a Teensy 3 as the brains of this clock, and the serial interface on the board provides a relatively easy means of setting the time without having to use buttons or tact switches. The clock face consists of 13 neopixels, with two red pixels showing the hour and a single green pixel showing the minutes. The time is measured with a DS3232 I2C real time clock with a battery backup.

The design is remarkably efficient since the LEDs are off 97% of the time, only being lit at the top of the minute. There are provisions for IR control and a PIR sensor to display the time whenever it’s needed, but that would obviously mean a hit to the energy efficiency.

CD-ROM POV Clock

clock

[Kyle] wanted to try something new. A Persistence of Vision Clock using a CD-ROM drive.

We have covered lots of POV Clocks that make use of hard drives, but we think this is the first time we have seen a CD-ROM drive used instead. [Kyle] points out that CD-ROM drives are typically much quieter than hard drives, which is the main reason he chose the CD-ROM route.

At the heart of this project is a good old ATMEGA168 and an RGB LED strip for the lights. To measure and maintain the rotational speed of the clock [Kyle] used an IR photodiode that detects a reference mark on the disc. An elegant build of a classic POV Clock, with a new twist!

The cool thing about this project is he did not actually use the CD-ROM drive like you think he would — he chucked the spindle motor and instead is spinning the disk using the tray ejection motor! He did this so he could control the motor by PWM straight off the microcontroller, whereas the spindle motor would require an IC and a varying control signal with specific voltage amplitudes.

He also experimented with different backgrounds and background lighting, which you can see in the video after the break!

Continue reading “CD-ROM POV Clock”

A Simple Nixie Clock With Logic Gates

Here is a very nice project that [Znaxque] finished a few months ago: a simple nixie clock made with logic gates only. In this build, the mains 50Hz is used as a time base instead of a 32KHz crystal that most readers here may use. In the very long term, this clock may actually be more precise than a crystal-based one as power companies in Europe adjust the mains frequency. However, at a given moment the difference between this clock and a reference may be as big as 60 seconds.

The design was sketched on a simple piece of paper and later made using salvaged ICs. [Znaxque] only bought the six IN-14 nixies for $45 and the veroboard shown in the picture above. The BCD to Decimal decoders are 74141s and three buttons are present on the board to set minutes, hours, as well as resetting all the counters.

How Much Can You Cram Into A Wristwatch

Creating wearable electronics that are functional and not overly bulky is very, very hard. [Zak], though, makes it look easy. He started his DIY digital wrist watch to see how much he could cram into a watch-sized device. The finished product is really incredible, and one of the most amazing DIY watches we’ve ever seen.

The electronics for the watch include an ATMega328p, a DS3231M Real Time Clock, a Microchip battery charger, and a few resistors and caps. The display is an OLED, 1.3″ wide and only 1.5 mm thick, contributing to the crazy 10mm overall thickness of the watch.

The software is where this watch really shines. Along with the standard time and date functions, [Zak] included everything and more a wrist watch should have. There is an interface to set up to ten alarms on different days of the week, a Breakout and ‘Car Dodge’ game, a flashlight with integrated ‘rave’ mode, and a stopwatch. On top of this, [Zak] included some great animations very similar to the CRT-like animations found in Android.

It’s a fabulous piece of kit, and if any project were deserving of being made into an actual product, this is it.

You can check out [Zak]’s demo of all the functions of his watch below.

Continue reading “How Much Can You Cram Into A Wristwatch”

Jeep Dashboard Display Turned Into A Desk Clock

jeep-dash-display-clock

This display is easily recognizable by the buttons and the outline of a vehicle to the left. It’s a Vehicle Information Center (VIC) from a Jeep Grand Cherokee. [Florlayamp] discovered a row of the vehicles in a junkyard, all with the displays still intact. He grabbed one and turned the VIC into a desk clock. What would you pay for such a fine piece of used electronic hardware? How about six bucks? Yeah!

Getting it running couldn’t be simpler. It’s all set up to be programmed and run on it’s own. A bit of searching around turned up a schematic to figure out which wires are for power. It took some time to figure it out, but the thing draws about 2A so finding a worthy wall wart was a must.

Now that he was sure it would work [Florlayamp] started on the case build. It’s poplar with quarter round to frame the display. On the back you’ll find a single rocker switch.

Usually we see the opposite of this, adding displays to the dashboard instead of salvaging them.

 

A Weekend Trip To Verify General Relativity

8 years ago, for the 100th anniversary of the theory of relativity [Tom] decided to test the general theory of relativity.

As he was going to Mt Rainier (5400ft high) with his children for the weekend, he brought in his van 3 cesium clocks while leaving other atomic clocks at his home for comparison. The theory behind the test is that if you’re are at higher altitudes, then your speed (in a galactic coordinate system) is higher than the one you’d have at sea level and therefore time would go “slower” than at lower altitudes.

[Tom] brought 400 pounds of batteries, 200 pounds of clocks and left his car turned on during his 2 days stay in the ‘Paradise Lodge’. He used 120V DC to AC converters and chose to bring 3 cesium clocks to have a triple redundant  setup. When he came back home, he had the good surprise of finding a time difference of 23ns. This is a great application for those rubidium sources you’ve been scavenging.

[Thanks Indyaner via Reddit]