A Modernized Metric Clock

Much to the chagrin of many living in North America who still need to do things like keep two sets of wrenches on hand, most of the rest of the world has standardized to a simpler measurement system using metric units exclusively. The metric system is widely adopted worldwide, but we still use a base-60 system for timekeeping that predates the rest of the metric system. The French did attempt to “decimalize” timekeeping as well with the French Republican Calendar at around this same time, but this “metric” timekeeping system never caught on particularly well. It’s still an interesting historical tidbit, and [ClassTech] built this modern metric clock to explore it a little more.

The system itself uses ten-day weeks, ten-hour days, and 100-minute hours which makes it more in line with the base-10 system common to the rest of the metric system. But this means that a second in the French Republican system actually works out to a little less than one and a half SI seconds, meaning that a modern timekeeping computer needs to do a little more math to display the correct time at the correct interval. [ClassTech] is using a Particle Photon IoT processor getting the time from a NTP server, converting it to “metric time”, and displaying the time on a Nextion touch display.

While the device is reported to update the time once per second, we’re not sure if this is every SI second or every French Republican second. Either way, there are plenty of reasons this timekeeping system never gained widespread adoption, and a surprising one is that timekeeping tends to be easier in a base-60 system due to its capability of having more divisors. Many other reasons are less technical and more cultural, and timekeeping tends to be surprisingly difficult to coordinate even among shared numbers systems and languages.

Don’t Look Up, Or You’ll See The Time From This VFD Projection Clock

Ceiling clocks were a bit of a thing back in the days when clock radios were a fixture of nightstands. The idea was to project the time onto the ceiling so you’d only have to roll over onto your back and open your eyes to check the time, instead of potentially disturbing your slumber by craning your neck around to see the front of the clock.

As we recall, what sounded like a good idea was iffy in practice, with low-end optics and either weak incandescent bulbs or blazing LEDs. This nifty VFD projection clock by [Thomas Shupfs] seeks to fix those problems, and from the look of it does a pretty good job. It takes advantage of something else that fell out of favor with consumers — analog photography — by tapping into the ready supply of unwanted lenses. He paired that up with an IVL2-7/5 vacuum fluorescent display inside a 3D printed case with a cone-shaped extension to hold the lens at the right distance above the display. [Thomas] says that the STM32 software only supports JSON-RPC over USB at this time, and includes a couple of Python programs with examples of how to set the time and check the accuracy of the clock.

[Thomas] compares the clock head-to-head against his old LED projection clock, as seen in the featured image above; we flipped it for a better idea of what it would look like from bed. We’ve got to say the soft blue glow of the VFD would be a lot more pleasant to wake up to than the bright red LED projection. But this soft white projection clock is nice too.

Thanks to [skymab] for the tip.

Watch Time Roll By On This Strange, Spiral Clock

[Build Some Stuff] created an unusual spiral clock that’s almost entirely made from laser-cut wood, even the curved and bendy parts.

The living hinge is one thing, but getting the spacing, gearing, and numbers right also takes work.

The clock works by using a stepper motor and gear to rotate the clock’s face, which consists of a large dial with a spiral structure. Upon this spiral ramp rolls a ball, whose position relative to the printed numbers indicates the time. Each number is an hour, so if the ball is halfway between six and seven, it’s 6:30. At the center of the spiral is a hole, which drops the ball back down to the twelve at the beginning of the spiral so the cycle can repeat.

The video (embedded below) demonstrates the design elements and construction of the clock in greater detail, and of particular interest is how the curved wall of the spiral structure consists of a big living hinge, a way to allow mostly rigid materials to flex far beyond what they are used to. Laser cutting is well-suited to creating living hinges, but it’s a technique applicable to 3D printing, as well.

Thanks to [Kelton] for the tip!

Continue reading “Watch Time Roll By On This Strange, Spiral Clock”

It’s A Marble Clock, But Not As We Know It

[Ivan Miranda] is taking a very interesting approach to a marble clock. His design is a huge assembly that uses black and white marbles to create a (sort of) dot matrix display. It’s part kinetic art and part digital clock, all driven by marbles.

Here’s how it works: black and white marbles feed into a big elevator. This elevator lifts marbles to the top of the curved runs that make up the biggest part of the device. The horizontal area at the bottom is where the time is shown, with white and black marbles making up the numerical display. But how to make sure the white marbles and black marbles go in the right order?

The solution to that is simple. Marbles feed into the elevator in an unpredictable order. An array of sensors detects the color of each marble. Solenoids simply eject any marble that isn’t in the right place. For example, if the next marble for track n needs to be white, then simply kick out any black marbles in that position until there’s a white one. Simple, effective, and guarantees plenty of mesmerizing moving parts.

Of course, this means that marble ejection and marble color sensing need to be utterly reliable, and [Ivan] ran into problems with both. Marble ejection took some careful component testing and selection to get the right solenoids.  Color sensing (as well as detecting empty spaces) settled on IR-based sensors commonly used in line-following robots.

You can watch the clock in action in the video embedded below just under the page break. We recommend giving it a look, because [Ivan] does a great job of showing all of the little challenges that reared their heads, and how he addressed them. There are still a few things to address, but he expects to have those licked by the next video. In the meantime, [Ivan] asks that if anyone knows a source for high quality glass marbles in bulk, please let him know. Low quality ones vary in size and tend to get stuck.

Marble clocks are great expressions of creativity, especially now that 3D printing is common. We love clock hacks, so if you ever create or run across a good one, let us know about it!

Continue reading “It’s A Marble Clock, But Not As We Know It”

This Machine Has Lost Its Marbles

The astonishing variety of ways to tell the time which have appeared on these pages over the years provides a showcase of the talents and ingenuity of our community. Many clocks use designs we are familiar with, but every now and then along comes a clock that rings something new. So it is with [Ivan Miranda]’s latest work — a digital clock that shows the time with a dot matrix made of marbles. So far he’s published only part one of what will become a series. There’s technically no clock yet, but as it stands it’s enough of a marble machine to be a worthy project in its own right.

In the video below we see him solving the problems of creating free-running marble transport and handling via a conveyor belt, and solving such unexpected problems as cleanly releasing them from the belt, holding a row of marbles with a solenoid, and catching errant marbles that bounce free of the machine. The result is a rather pretty marble machine that makes an endless cascade of falling marbles on a curved track. We’re guessing that future videos will deal with the assembly of lines for the dot matrix display, such that the figures of the clock will be formed from black and white marbles, so this is a series to watch out for.

We’ve seen [Ivan]’s work in the past, not least for his giant 3D printer.

Continue reading “This Machine Has Lost Its Marbles”

A wooden digital clock with a metal knob on one end

Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock

Modern life can be stressful. Many of us struggle to balance work, family, exercise, and an ever-growing list of hacking projects, all of which claim our attention during the day. If you sometimes feel that those 24 hours just don’t cut it, you might be in luck: [HIGEDARUMA] has built a clock that can stretch your day by up to five hours.

Sadly, [HIGEDARUMA] hasn’t invented time travel (yet). What his clock does instead is slow down its own pace in the evening to push back the midnight hour. When it finally does reach 12:00 a.m., the clock’s pace is accelerated to ensure it’s back in sync with the rest of the world by six in the morning. It might seem silly, but there is a certain logic to it: [HIGEDARUMA] explains that evenings felt much longer when he was a child and that he would like to try and experience that again. Our sense of time may change over our lifetime, even if the actual passage of time doesn’t.

Timescales aside, the 29-hour clock is a neat piece of work from a hardware point of view. The case is made from 4 mm laser-cut MDF with wood-grain foil on the outside. Inside, there’s an ESP32 to run the show, along with an RTC module and three four-digit seven-segment LED displays. A chunky “volume” knob on the front lets you choose how much you’d like your day to be stretched.

We’ve seen clocks with non-linear dials before, as well as extremely linear ones, but this might be the first one with a non-constant pace. It makes us wonder what the passage of time feels like for those frozen in ice for 46,000 years.

Continue reading “Hackaday Prize 2023: Stretch Your Day With This 29-Hour Clock”

Time And Tide Are One Thing

The rise of 3D printing has given us incredible things, from awesome tchotchkes to intricate chocolates to useful things like spare body parts. But none has been so vital to comedy as say, printing hats for sea urchins. That’s right, sea urchins like to cover up with various things and will happily don, say, a 3D printed hat if presented the opportunity.

So anyway, this is a tide clock that uses a printed sea urchin and various hats to tell the time until/between low and high tide. How? It uses the position of a given hat relative to a couple nOOds LED strands, one for high tide and another for low.

Inside the large bamboo enclosure is an TTGO that fetches cheaply-obtained tide information and displays it on the screen. The TTGO also controls a servo that moves the sea urchin around. As it moves, a magnet in the urchin’s head (?) attracts the next hat.

Before settling on the current design, [rabbitcreek] experimented with both a sand dollar and a sea urchin skeleton. All the files are available if you want to whip up your own.

This isn’t [rabbitcreek]’s first foray into tide clocks. Here’s a solar number that should last for years.