DIY foam cutter made from Uni-Strut.

4 Axis CNC Foam Cutter Sports A Unistrut Frame

CNC Foam Cutters are capable of cutting out some pretty cool shapes that would otherwise be extremely difficult to do. They do this by pulling a heated metal wire though a block of foam. Electrical current passing through the wire heats it up causing the foam to melt away, there is no dust and no mess to clean up. [batchelc] decided to make his own large-scale CNC Foam Cutter and took a lot of photos along the way.

Since machine is 4 axis, meaning both sides can move forward/back and up/down independently of each other, tapered shapes are possible. One example where this would be helpful is cutting wings that are swept or have different profiles at each end.

DIY foam cutter made from Uni-Strut.

The main frame of the machine is made from Unistrut and measures a whopping 60 by 60 inches. Subtract the size of the mechanical components and the cutting area ends up being 48 by 42 and 22 inches high. The foam sits on an MDF bed, gravity is the only method of holding the foam down during cutting. The wire doesn’t actually touch the foam so there is no force applied to cause it to move. The hot wire moves slowly and melts the foam just a few thousands of an inch in front of the wire resulting in no contact between the two.

Both axes on each side are driven by 1/2-10″ lead screws supported by bearing blocks on both sides. The longitudinal axes smoothly traverse the length of the machine by means of skate bearings that ride on the Unistrut channel itself. The vertical axes have a plastic bushing that slides along a round shaft.

The control portion of the machine is a HobbyCC FoamPro kit that came with the 4 axis stepper motor control board and 4 NEMA 23 stepper motors. GMFC software is used to both generate the g-code and send the commands to the stepper motor control board.

Continue reading “4 Axis CNC Foam Cutter Sports A Unistrut Frame”

Add CNC To Your…Propane Tank??!?

It’s starting to be that time of year again; the Halloween-themed hacks are rolling in.

[John Lauer] needed a propane-powered flame effect for his backyard ICBM “crash site”. Rather than pony up for an expensive, electronically-controlled propane
valve, he made a custom bracket to connect a stepper motor to the propane burner’s existing valve.

With the stepper motor connected up, a TinyG stepper motor controller and [John’s] own graphical interface, ChiliPeppr, take care of the rest.

The hack is almost certainly a case of “everything looks like a nail when you have a hammer” but you have to admit that it works well and probably didn’t take [John] all that much time to whip up. Maybe everyone should have a couple spare stepper motors with driver circuitry just lying around ready to go? You know, just in case.

All the details of the build are in the video. If you’re done watching the flames, skip to around 2:50 where we see the adapter in action and then [John] steps us through its construction.

You may have seen coverage of the TinyG motor controller here before.

Additional thanks to [Alden Hart] for the tip.

CNC Sound Enclosure for Living Room

Sound Isolation Box Makes Living Room Based CNC Routing Tolerable

CNC Machines can be loud, especially if they are equipped with a high-speed router spindle. Unfortunately, such a loud racket could be a problem for the apartment dwellers out there. Fear Not! [Petteri] has come up with a solution. It’s a sound isolation enclosure for his mini CNC Router that doubles as furniture. It keeps the sound and dust in while pumping out some cool parts….. in his living room.

What may just look like a box with an upholstered top actually had a lot of thought put into the design. The front MDF panel folds down to lay flat on the floor so that the user can kneel on it to access the machine without putting unnecessary stress on the door hinges. The top also is hinged to allow some top-down access or permit a quick peek on the status of a job. All of the internal corners of the box were caulked to be air tight, even a little air passageway would allow sound and dust to escape. Two-centimeter thick sound insulation lines the entire interior of the box and the two access lids have rubber sealing strips to ensure an air tight seal when closed.

With stepper motors, the spindle motor and control electronics all running inside an enclosed box, there is some concern over heat build up. [Petteri] hasn’t had any problems with that so far but he still installed an over-temp power cutoff made from a GFCI outlet and a thermostat temperature switch. This unit will cut the mains power if the temperature gets over 50º C by intentionally tripping the GFCI outlet. None of the internal parts will ignite under 300º C, so there is quite a safety buffer.

Although the isolation box came out pretty good, [Petteri] admits there is room for improvement; when cutting wood or aluminum, the noise level is kind of annoying. If he had to do it again, he would use thicker MDF, 20mm instead of 5mm. However, during general use while cutting plastic, the router is still quieter than his dishwasher.

Video below.

Continue reading “Sound Isolation Box Makes Living Room Based CNC Routing Tolerable”

The TinyG Motion Controller

When you go to a trade show of any kind, you’re expecting cool demos in the booths. At Maker Faire, there were plenty, but one of the most hypnotic was a robot built around Synthetos’ TinyG motion controller.

The demo was simply a large CNC gantry moving a ball bearing around on a string. The gantry moved in the X and Y axes, and the miniature wrecking ball was spooled and unspooled in the Z axis. The ball move around the space, coming to a complete stop without any swaying. There were even a few clear plastic tubes that the ball fell in, and popped out of without raising or lowering the string. It’s the height of motion controller coolness, all made possible with the TinyG.

The TinyG was one of a few motion control and CNC boards found at the faire. In its base configuration, it has 6 axes of motion control, RS485 to network several boards for crazy machine configurations, and a suitably powerful processor to do everything correctly.

AUTOMATIC DOG FEEDER

The Thurber Feeder 5000 Helps To Slow Fido Down

Does your dog eat too fast? [Thurber] does, and he even chokes occasionally while snarfing down the kibble — naturally this worried his owners, so [Jason] stepped up to the challenge to slow him down. Introducing the Thurber Feeder 5000.

[Jason] is a seasoned maker, and has built a few CNC machines in his day — he’s even automated an Etch a Sketch with stepper motors. Making the Thurber Feeder 5000 was a piece of cake. He designed the entire thing in 3D CAD and then used his home-made CNC machine to cut out all the parts, 3D printing a few of the more complex mounting brackets.

It’s a fairly simple device consisting of a food hopper (seal-able to keep Thurber away), a stepper motor and an auger bit borrowed from a chocolate fondue fountain. The stepper goes through a 6:1 belt pulley ratio which gives it a whopping 200 oz-in of torque to push those kibbles and bits through the feeding pipe. The speed is adjustable by programming the Parallax Propeller, so once they found an acceptable eating speed [Jason] set it as default. A single button turns it on, and while the machine is running it lights up — turning off when little [Thurber] is done.

Continue reading “The Thurber Feeder 5000 Helps To Slow Fido Down”

A Folding Laser Cutter

Want a laser cutter, but don’t have the space for one? How about a portable machine to engrave and cut wood and plastics? A folding laser cutter solves these problems, and that’s exactly what Red Ant Lasers was showing off last weekend at Maker Faire.

Inside the team’s Origami laser cutter is a 40 Watt CO2 tube, shooting its beam along an entirely enclosed beam path. The beam travels through the body of the machine, out into the folding arm of the machine, and down to whatever material you’ve placed the Origami on. It’s a 40 Watt laser so it will cut plywood and plastics, and as shown in the video above, does a fine job at engraving plywood.

This is a Class 4 laser device operating without any safety glass, but from the short time I spent with the Red Ant team, this is a reasonably safe device. You will need safety glasses if you’re within five feet, but after that, everything (according to OSHA, I think) is safe and not dangerous. Either way, it’s a tool just like a table saw. You don’t see commentors on the Internet complaining about how a spinning metal blade is dangerous all the time, do you?

The Red Ant guys are currently running a Kickstarter for their project, with a complete unit going for $4200. It’s pricier than a lot of other lasers, but not being constrained by the size of a laser cutters enclosure does open up a few interesting possibilities. You could conceivably cut a 4×8 sheet of plywood with this thing, and exceptionally large engravings start looking easy when you have a portable laser cutter.

Cryogenic Machining Custom Rubber Parts

Cryogenic Machining: Custom Rubber Parts

Fashioning a custom, one-off rubber part for your project isn’t usually an option, but [Ben Krasnow] has an alternative to injection molding and casting: machining frozen rubber.

As [Ben] points out, you can’t exactly pop a sheet of rubber on your mill and CNC the needed shape; the bit will push the material around rather than cut it. Freezing the rubber first, however, allows you to carve into the now-hardened material.

His initial setup consisted of a sheet of aluminum with water drizzled on top, a square of neoprene placed on the water, and a steady stream of -60 to -80C alcohol flowing directly onto the rubber. The water underneath freezes, holding the neoprene in place. This proved problematic as the ice-clamp gives way before the milling is complete. [Ben] later adds some bolts to clamp the pieces down, allowing the milling process finish as planned.

A small plastic tray sits underneath this assembly to capture the alcohol as it runs off, feeding it back with some tubing. [Ben] recommends against a submersible aquarium pump—his initial choice—because the pump stopped working after a few minutes immersed in the chilly alcohol. An external, magnetically-driven pump solved the problem although it does require manual priming.

Stick around after the jump for the video and check out some of [Ben’s] other projects, like his quest for the perfect cookie, or CT scanning a turkey.

Continue reading “Cryogenic Machining: Custom Rubber Parts”