So What Is A Supercomputer Anyway?

Over the decades there have been many denominations coined to classify computer systems, usually when they got used in different fields or technological improvements caused significant shifts. While the very first electronic computers were very limited and often not programmable, they would soon morph into something that we’d recognize today as a computer, starting with World War 2’s Colossus and ENIAC, which saw use with cryptanalysis and military weapons programs, respectively.

The first commercial digital electronic computer wouldn’t appear until 1951, however, in the form of the Ferranti Mark 1. These 4.5 ton systems mostly found their way to universities and kin, where they’d find welcome use in engineering, architecture and scientific calculations. This became the focus of new computer systems, effectively the equivalent of a scientific calculator. Until the invention of the transistor, the idea of a computer being anything but a hulking, room-sized monstrosity was preposterous.

A few decades later, more computer power could be crammed into less space than ever before including ever higher density storage. Computers were even found in toys, and amidst a whirlwind of mini-, micro-, super-, home-, minisuper- and mainframe computer systems, one could be excused for asking the question: what even is a supercomputer?

Continue reading “So What Is A Supercomputer Anyway?”

Firefox logo displayed on screen

Add WebUSB Support To Firefox With A Special USB Device

RP2040-based Pico board acting as U2F dongle with Firefox. (Credit: ArcaneNibble, GitHub)
RP2040-based Pico board acting as U2F dongle with Firefox. (Credit: ArcaneNibble, GitHub)

The WebUSB standard is certainly controversial. Many consider it a security risk, and, to date,  only Chromium-based browsers support it. But there is a workaround that is, ironically, supposed to increase security. The adjacent Universal 2nd Factor (U2F) standard also adds (limited) USB support to browsers. Sure, this is meant solely to support U2F USB dongles for two-factor authentication purposes, but as [ArcaneNibble] demonstrates using U2F-compatible firmware on a Raspberry Pi RP2040, by hijacking the U2F payload, this API can be used to provide WebUSB-like functionality.

Continue reading “Add WebUSB Support To Firefox With A Special USB Device”

EPROM-based Enigma Machine

The Enigma machine is perhaps one of the most legendary devices to come out of World War II. The Germans used the ingenious cryptographic device to hide their communications from the Allies, who in turn spent an incredible amount of time and energy in finding a way to break it. While the original Enigma was a complicated electromechanical contraption, [DrMattRegan] recently set out to show how its operation can be replicated with an EPROM.

The German Enigma machine was, for the time, an extremely robust way of coding messages. Earlier versions proved somewhat easy to crack, but subsequent machines added more and more complexity rendering them almost impenetrable. The basis of the system was a set of rotors which encrypted each typed letter to a different one based on the settings and then advanced one place in their rotation, ensuring each letter was encrypted differently than the last. Essentially this is a finite-state machine, something perfectly suited for an EPROM. With all of the possible combinations programmed in advance, an initial rotor setting can be inputted, and then each key press is sent through the Enigma emulator which encrypts the letter, virtually advances the rotors, and then moves to the next letter with each clock cycle.

[DrMattRegan]’s video, also linked below, goes into much more historical and technical detail on how these machines worked, as well as some background on the British bombe, an electromechanical device used for decoding encrypted German messages. The first programmable, electronic, digital computer called Colossus was also developed to break encrypted Enigma messages as well, demonstrating yet another technology that came to the forefront during WWII.

Continue reading “EPROM-based Enigma Machine”

Soviet ZX Spectrum clone on a table

ZX Spectrum, Soviet Style: A 44-IC Clone You Can Build

If you’ve ever fancied building a ZX Spectrum clone without hunting down ancient ULAs or soldering your way through 60+ chips, [Alex J. Lowry] has just dropped an exciting build. He has recreated the Leningrad-1, a Soviet-built Spectrum clone from 1988, with a refreshingly low component count: 44 off-the-shelf ICs, as he wrote us. That’s less than many modern clones like the Superfo Harlequin, yet without resorting to programmable logic. All schematics, Gerbers, and KiCad files are open-source, listed at the bottom of [Alex]’ build log.

The original Leningrad-1 was designed by Sergey Zonov during the late Soviet era, when cloning Western tech was less about piracy and more about survival. Zonov’s design nailed a sweet spot between affordability and usability, with enough compatibility to run 90-95% of Spectrum software. [Alex]’ replica preserves that spirit, with a few 21st-century tweaks for builders: silkscreened component values, clever PCB stacking with nylon standoffs, and a DIY-friendly mechanical keyboard hack using transparent keycaps.

While Revision 0 still has some quirks – no SCART color output yet, occasional flickering borders with AY sound – [Alex] is planning for further improvements. Inspired to build your own? Read [Alex]’ full project log here.

A plugged-in 12VHPWR cable, with two thermistors inserted into the connector shell, monitoring for heat

12VHPWR Watchdog Protects You From Nvidia Fires

The 12VHPWR connector is a hot topic once again – Nvidia has really let us down on this one. New 5080 and 500 GPUs come with this connector, and they’re once again fire-prone. Well, what if you’re stuck with a newly-built 5080, unwilling to give it up, still hoping to play the newest games or run LLMs locally? [Timo Birnschein] has a simple watchdog solution for you, and it’s super easy to build.

All it takes is an Arduino, three resistors, and three thermistors. Place the thermistors onto the connector’s problematic spots, download the companion software from GitHub, and plug the Arduino into your PC. If a temperature anomaly is detected, like one of the thermistors approaching 100C, the Arduino will simply shut down your PC. The software also includes a tray icon, temperature graphing, and stability features.  All is open-source — breadboard it, flash it. You can even add more thermistors to the mix if you’d like!

This hack certainly doesn’t just help protect you from Nvidia’s latest creation – it can help you watch over any sort of potentially hot mod, and it’s very easy to build. Want to watch over connectors on your 3D printer? Build one of these! We’ve seen 12VHPWR have plenty of problems in the past on Nvidia’s cards – it looks like there are quite a few lessons Nvidia is yet to learn.

SHOUT For Smaller QR Codes

QR codes have been with us for a long time now, and after passing through their Gardenesque hype cycle of inappropriate usage, have now settled down to be an important and ubiquitous part of life. If you have ever made a QR code you’ll know all about trying to generate the most compact and easily-scannable one you can, and for that [Terence Eden] is here with an interesting quirk. Upper-case text produces smaller codes than lower-case.

His post takes us on a journey into the encoding of QR codes, not in terms of their optical pattern generation, but instead the bit stream they contain. There are different modes to denote different types of payload, and in his two examples of the same URL in upper- and lower- cases, the modes are different. Upper-case is encoded as alphanumeric, while lower-case, seemingly though also containing alphanumeric information, is encoded as bytes.

To understand why, it’s necessary to consider the QR codes’ need for efficiency, which led its designers to reduce their character set as far as possible and only define uppercase letters in their alphanumeric set. The upper-case payload is thus encoded using less bits per character than the lower-case one, which is encoded as 8-bit bytes. A satisfying explanation for a puzzle in plain sight.

Hungry for more QR hackery? This one contains more than one payload!

Giving A Proprietary Power Supply The Boot

You’ve probably noticed that everywhere you go — the doctor’s office, hotels, or retail shops, there are tiny PCs everywhere. These small PCs often show up on the surplus market for a very good price, but they aren’t quite full-blown PCs. They usually have little option for expansion and are made to be cheap and small. That means many of them have custom and anemic power supplies. We aren’t sure if [bm_00] needed a regular power supply to handle a graphics card or if the original power supply died, but either way, the HP small-form-factor box needed a new power supply. It took some clever work to be able to use a normal power supply in the little box.

At first, we thought this wouldn’t be much of a story. The motherboard surely took all the regular pins, so it would just be a matter of making an adapter, right? Apparently not. The computers run totally on 12V and the motherboard handles things like turning the computer on and off. The computer also was trying to run the power supply’s fan which needed some work arounds.

Continue reading “Giving A Proprietary Power Supply The Boot”