BBC’s Micro:bit Gets Python

The BBC has developed a computer to be used by thousands of students across the UK. While not very powerful in terms of hardware, it comes with an interpreted language that will get students writing their own code and will launch the careers of an entire generation of web developers. This is, of course, the BBC Micro, a computer introduced in 1981, but is still deeply revered by millions of former students.

Microcontrollers are everywhere now, and the BBC is looking to replicate their success with the micro:bit. Unlike the BBC Micro, this isn’t a proper computer with a keyboard and a monitor. Instead, it’s a microcontroller development platform based on an ARM chip. Now, the micro:bit is getting Python, the BASIC of today, and will assuredly be even more useful in UK classrooms.

The initial development for Python on the micro:bit started down the road of using Microsoft’s TouchDevelop as a browser-based IDE that would send C++ code to an mBed cloud compilation service. A hex file would be generated, this would be downloaded to the local file system, and finally the student would simply drag the hex file over to the micro:bit since it appeared on the desktop as a USB storage device. This was a terrible idea, because MicroPython exists. The current way of running Python on the micro:bit is as simple as plugging it in to a USB port, opening a terminal, and writing some code. It’s the closest you’re ever going to get to a computer with BASIC in ROM, and it’s the best device for millions of 11-year-olds to learn how to code.

Thanks [dassheep] for the tip.

DIY Computer — 1968 Style

What does it mean to “build your own computer?” Today, it is likely to mean you bought a motherboard, a power supply, and a case and put it all together. You might even have made an embedded computer using a few chips, including an off the shelf CPU. However, there are those guys (like me) who have built entire computers using FPGAs and some (not like me) who have built computers out of TTL chips, discrete components, and even relays and we have covered quite a few of them.

It hasn’t always been that easy. Components are readily available now and relatively cheap (especially considering inflation). In the 1960’s, simple components cost more than you pay for them today and back then your hypothetical self was making less money. In just about every way imaginable, the cost was prohibitive.

clipSo what did you do if you were a kid saving money from a paper route in 1968 and you wanted to build a computer? Maybe you turned to How to Build a Working Digital Computer a book published in 1968 by [Edward Alcosser], [James Phillips], and [Allen Wolk]. This book did as the title promised: you could build a working digital computer. The components, though, were paper clips, tin cans, thread spools, and other household items. The only real electronic components you had to use were light bulbs and a battery, although you might also use store-bought switches in some places instead of the homemade versions shown in the book.

Continue reading “DIY Computer — 1968 Style”

Repairing $55,000 Of Vintage Core Memory

If you find yourself in the vicinity of Mountain View, California you really should stop by the Computer History Museum. Even if you aren’t into the retrocomputer scene, there’s so much cool hardware ranging from a replica of the Babbage engine to nearly modern PCs. There’s even a room dedicated to classic video games. There are two fully working old computers at the museum that have their own special rooms: a PDP-1 (complete with vector scope to run Space War) and an IBM 1401.

The IBM 1401 looks like big iron, but in its day it was a low-end machine (costing an innovative business about $2500 a month). The base unit had 4000 words of magnetic core memory, but if you had a hankering for more memory, you could add the 350 pound dishwasher-sized IBM 1406 (for only $1575 a month or you could buy for $55100). How much memory did you get for $18900 a year? An extra 12000 words!

The problem is, the museum’s 1406 had developed a problem. Some addresses ending in 2, 4 or 6 failed and they were all in the same 4K block. [Ken Shirriff] was asked to go in and try to find the problem. We don’t want to give away the story, but [Ken] wrote up his experience (with lots of pictures).

Continue reading “Repairing $55,000 Of Vintage Core Memory”

TEMPEST: A Tin Foil Hat For Your Electronics And Their Secrets

Electronics leak waves and if you know what you’re doing you can steal people’s data using this phenomenon. How thick is your tinfoil hat? And you sure it’s thick enough? Well, it turns out that there’s a (secret) government standard for all of this: TEMPEST. Yes, all-caps. No, it’s not an acronym. It’s a secret codename, and codenames are more fun WHEN SHOUTED OUT LOUD!

The TEMPEST idea in a nutshell is that electronic devices leak electromagnetic waves when they do things like switch bits from ones to zeros or move electron beams around to make images on CRT screens. If an adversary can remotely listen in to these unintentional broadcasts, they can potentially figure out what’s going on inside your computer. Read on and find out about the history of TEMPEST, modern research, and finally how you can try it out yourself at home!

Continue reading “TEMPEST: A Tin Foil Hat For Your Electronics And Their Secrets”

Raspberry Pi Tablet Based On Sailfish OS

There are so many hacks in this project it’s hard to know where to start. So let’s start at the SailPi tablet which is a Raspberry Pi running the Sailfish OS on an LCD touch screen powered by a cell phone battery pack. The design looks more like a high-tech sandwich with the Pi in the middle than a tablet. Despite the appearance it works, at that’s what counts. COs98UBWsAAQNh5The creator, [Aleksi Suomalainen] expended a lot of effort pulling all the pieces together on this project.

The Sailfish OS project is targeted at creating a new OS for mobile devices, especially cell phones. It is open source which invites developers to contribute to the project. The touch screen user interface is designed for ease of use by gestures from one finger on the hand holding the phone.

[Aleksi] ported Sailfish to a Pi 2 during a hacking week. He’s shared the code for it on his blog. During the hack week he played with accessing the GPIO on the Pi to flash an LED. To get you up and running quickly he provided an image you can load onto an SD.

It appears the Pi is finding a niche for OS hackers in addition to the hardware hackers using the GPIO.

Don’t miss the demo after the break to see the OS running on the Pi. Continue reading “Raspberry Pi Tablet Based On Sailfish OS”

Hipster Linux Box Is An 8mm Film Editor

Browsing though the junk store one day [Alec] spotted an old school 8mm film editor. For those who weren’t around, video used to be shot on film and editing it was a mechanical task of cutting (with a sharp implement) and pasting (with special tape) back together. It’s sad to see these in junk stores, but great for [Alec] who thought it begged to have an LCD and a single board computer implanted in it.  Once the editor was in hand, the machine was gutted of its very simple parts: a lamp, some mirrors and a couple of lenses. He took measurements of the hollowed out enclosure and got down to business.

The hunt for a 4:3 aspect ratio LCD was on. Through a little bit of research, an LCD security screen was ordered from Alibaba. For the brains of the build an OLinuXino A13 board was chosen due to its native VGA output perfect for the LCD screen, a decent 1GHz Allwinner CPU, and the physical size which would fit in the editor housing.

With some haggling, Linux was installed on the SBC along with some games and the system was buttoned back up. A neat touch was added to the arms where you would originally place your film reals in the form of some fold out speakers, making the whole thing look like something direct out of a classic Sci-fi film. Check out the name of the project: PCsr, pronounced PC Senior… nice!

We’d love to see some film reels added as speaker grills. Maybe there will be some leftover reels to use after converting all your old film to digital.

Join us after the break for a quick video

Continue reading “Hipster Linux Box Is An 8mm Film Editor”

Macintosh Hard Drive Repair

The Macintosh II was a popular computer in the era before Apple dominated the coffee shop user market, but for those of us still using our Mac II’s you may find that your SCSI hard drive isn’t performing the way that it should. Since this computer is somewhat of a relic and information on them is scarce, [TheKhakinator] posted his own hard drive repair procedure for these classic computers.

The root of the problem is that the Quantum SCSI hard drives that came with these computers use a rubber-style bump stop for the head, which becomes “gloopy” after some time. These computers are in the range of 28 years old, so “some time” is relative. The fix involves removing the magnets in the hard drive, which in [TheKhakinator]’s case was difficult because of an uncooperative screw, and removing the rubber bump stops. In this video, they were replaced with PVC, but [TheKhakinator] is open to suggestions if anyone knows of a better material choice.

This video is very informative and, if you’ve never seen the inside of a hard drive, is a pretty good instructional video about the internals. If you own one of these machines and are having the same problems, hopefully you can get your System 6 computer up and running now! Once you do, be sure to head over to the retro page and let us know how you did!

Continue reading “Macintosh Hard Drive Repair”