Quake 2 Ported To Apple Watch

DOOM always seems to spontaneously appear on any new device the day it’s released. From printers to industrial robots to pregnancy tests, it always makes its way on anything with an integrated circuit and a screen. But that’s not the only 90s video game with a cult following and and ability to run on hardware never intended for gaming. The early Quake games are still remarkably popular, and the second installment of this series was recently brought to the Apple Watch thanks to [ByteOverlord].

Building this classic for the Apple Watch requires using the original Quake files and some work with Xcode to get a package together that will run on the wrist-bound computer. There are a few other minimum system requirements to meet as well, but with all of that out of the way the latest release runs fairly well on this small watch. The controls have been significantly modified to use the Apple’s touch screen and digital crown instead of any peripherals, and as a result it’s not likely you’d win any matches if it was possible to cross-play with PC users with a setup like this, but it’s definitely playable although still missing a few features compared to the PC version.

This actually isn’t the first Quake game to be ported to the Apple Watch, either. The first version of Quake ran on this device thanks to [MyOwnClone]’s efforts a little over a year ago. It’s also not the first time we’ve seen Quake running on unusual Apple hardware, either. Take a look at this project which uses one of the early iPods to play this game, along with the scroll wheel for a one-of-a-kind controller.

Thanks to [Joni] for the tip!

Apple Invent The Mechanical Watch

The Apple Watch has been on the market for long enough that its earlier iterations are now unsupported. Where some see little more than e-waste others see an opportunity, as has [NanoRobotGeek] with this mechanical watch conversion on a first-generation model.

What makes this build so special is its attention to detail. Into the Apple Watchcase has gone a Seiko movement, but it hasn’t merely been dropped into place. It uses the original Apple watch stem which is offset, so he’s had to create a linkage and a tiny pulley system to transfer the forces from one to the other. The rotor is custom-machined with am Apple logo, and the new watch face is a piece of laser-cut and heat treated zirconium. Even the watch movement itself needed a small modification to weaken the stem spring and allow the linkage to operate it.

The build is a long one with many steps, and we’re being honest when we say it would put our meager tiny machining skills to an extreme test. Sit down and take your time reading it, it really is a treat. Apple Watches may head to the tip after five years, but not this one!

See more in the video below the break, and of course long-time readers may remember we’ve considered the Apple Watch versus mechanical watches before.

Continue reading “Apple Invent The Mechanical Watch”

Ski Season Sees Apple’s Crash Detection System Fire Deluge Of False Positives

Smartphone features used to come thick and fast. Cameras proliferated, navigation got added, and then Apple changed the game by finally making touch computing just work. Since then, truly new features have slowed to a trickle, but Apple’s innovative crash detection system has been a big deal where safety is concerned.

The problem? It’s got a penchant for throwing false positives when iPhone and Apple Watch users are in no real danger at all. We first covered this problem last year, but since then, the wintery season has brought yet more issues for already-strained emergency responders.

Continue reading “Ski Season Sees Apple’s Crash Detection System Fire Deluge Of False Positives”

Building A Poketch Powered By An Apple Watch

In Pokemon Diamond and Pearl and the ensuing modern re-releases, the player is given a computer called a Poketch to assist on their journey. [DistressedOwl] decided to build one for real.

The build starts with an Apple Watch, which provides a capable smartwatch platform and a quality display. It’s then given a snap-on case that’s 3D printed in PLA. [DistressedOwl] decided to use model painting techniques to give the build a worn-in, distressed look, which feels fitting for a watch belonging to a rough-and-tumble Pokemon trainer.

The Apple Watch runs a custom app via Test Flight which mimics the appearance of the in-game Poketch. It includes various screens like a basic map and Pikachu looking melancholy next to a digital watch. Sadly, the dowsing app in the Poketch won’t help you find hidden items on the ground.

It’s a build that reminds us of some great Pip-Boy builds over the years. It would make the perfect addition to a Pokemon cosplay, too. Just don’t forget to take some Pokeballs along too!

Live Glucose Monitoring With The Apple Watch

There has been a rumor that Apple is working on a glucose monitoring solution for the Apple watch. [Harley] decided not to wait and managed to interface an Abbot FreeStyle Libre sensor with the Apple watch. The sensor doesn’t directly read glucose continuously, but it does allow for more frequent reading which can help diabetic patients manage their blood sugar levels. However, as part of the hack, [Harley] effectively converts the meter to a continuous-reading device, another bonus.

The trick is to add a Bluetooth transmitter to the NFC sensor. Using a device called a MiaoMiao, the task seems pretty simple. The MiaoMaio is small, waterproof, and lasts two weeks on a charge, which is longer than the sensor’s life. Honestly, this is the hack since once you have the data flowing over Bluetooth, you can process it in any number of ways including using an app on the Apple watch.

It isn’t perfect. There’s a slight lag with readings due to the way the sensor works. However, you usually don’t care as much about the absolute value of your glucose (unless it is very high or very low). You are usually more interested in the slope of the change. This data is more than good enough for that.

In fact, the most complex part of this seems to be the watch app. It might be less work to feed the data to a machine learning model and let AI guide your insulin injections. Something to think about.

We have a keen interest in glucose monitoring around here and we know why it is so darn hard. Honestly, the idea of pushing glucose meter data to a watch isn’t new, but this is a well-done implementation with a lot of possibilities.

Apple Watch Gets Custom Transparent Case

The Apple Watch was the tech company’s attempt to bring wrist computers into the mainstream. It’s naturally available in a variety of fits and finishes, but if you want something properly original, you’ve got to go custom. [Useless Mod] does just that with a clear case for the popular smartwatch.

The mod starts with a patient, careful disassembly of the watch – necessary given the delicate components inside. It’s achieved in the end with only having to drill out 1 screw and an unfortunately snapping of the crown wheel axle. However, [Useless Mod] presses on, and silicone casts the original Apple enclosure. The video goes over all the finer points, from degassing to using strips of acrylic plastic to act as runners. Once done, the silicone mold is used to produce a replica case in transparent epoxy, and the watch is reassembled.

The final result is impressive, with the case optically clear and showing off the watch’s internals. The look is improved by removing some of the original insulation tape to better reveal the PCBs inside. Unfortunately, the design of the watch, which is largely covered by a screen and heartbeat sensor, means it’s not the greatest choice for a clear case mod, but it works nonetheless. We’ve seen similar work before from [Useless Mod] too – like this transparent drone case for the Mavic Mini. Video after the break.

Continue reading “Apple Watch Gets Custom Transparent Case”

Windows 95 On An Apple Watch

What happens if the slick user interface and tight iOS integration of your Apple Watch leave you wanting more? A real operating system, from the days when men were men and computers were big grey boxes!

[Nick Lee] solved this unexpected problem with his Watch by getting a working copy of Windows 95 to run on it. On paper it shouldn’t be at all difficult, with a 520 MHz ARM, 512 MB of RAM, and 8GB of storage you might think that it would eclipse the quick 486s and low-end Pentiums we ran ’95 on back in the day with ease. But of course, the ability to run aged Redmond operating systems on a Watch was probably not at the top of the Apple dev team’s feature list, so [Nick] had to jump through quite a few hoops to achieve it.

As you might expect, the ’95 installation isn’t running directly on the Watch. In the absence of an x86 processor his complex dev process involved getting the Bochs x86 emulator to compile for the Watch, and then giving that a ’95 image to boot. The result is comically slow, with a 1-hour boot time and a little motor attached to the Watch to vibrate it and stop it going to sleep. It’s not in any way a useful exercise, after all who’d really want to use ’95 on a Watch? Internet Explorer 3 and The Microsoft Network, how handy! But it’s one of those “because you can” exercises, and we applaud [Nick] for making it happen. If you want to give it a try, his Bochs-forWatchOS code is on Github.

The video below the break shows the process of booting the ’95 Watch, opening the Start Menu, and running one of the card games. One can almost feel the lengthening shadows outside as it goes.

Continue reading “Windows 95 On An Apple Watch”