These days, if you want to flash some LEDs, you’d probably grab a microcontroller. Maybe you’d go a little more old-school, and grab a 555. However, [Jacob] is even more hardcore than that, as evidenced by this chunky electromechanical flasher build.
[Jacob] goes into great detail on his ancillary write-up, describing how the simple building blocks used by industrial control engineers can be used to make a flasher circuit that cycles once per second. Basically, two relays are paired with two 0.5-second delay timers. The two relays tag each other on and off on delay as their timers start and expire, with the lamp turned on and off in turn.
We’ve had lots of other great entries to our One Hertz Challenge, too — from clocks to not-clocks. There’s still time to get an entry in — the deadline for submission is Tuesday, August 19 at 9:00AM Pacific time. Good luck out there!
[David]’s project was inspired by a product that Hayes produced in the 1980s, which provided a serial-port based real-time clock solution for computers that lacked one on board. The heart of the project is an Arduino Uno, which itself uses a Dallas DS3231 RTC module to keep accurate time. [David] then drew from an IEC driver developed by [Lars Pontoppidan] for the MM2IEC project. This enables the Arduino to report the time to the VIC-20 via its IEC port.
The project is a neat way to provide a real-time clock source to programs written in Commodore BASIC. It’s also perfectly compatible with the IEC bus, so it can be daisy chained along with printers and disk drives without issue. [David] hasn’t tested it with a Commodore 64, but he suspects it should work just as well on that platform, too.
If you’ve ever wanted to build something clock-based for the VIC-20 but didn’t know how, this is a great piece of hardware to solve that problem. Meanwhile, you might find joy in reading about real-time clock hacks for other systems like the Raspberry Pi. Meanwhile, if you’re working on your own nifty timekeeping projects, don’t hesitate to let us know!
Let’s say you want to build a Nixie clock. You could go out and find some tubes, source a good power supply design, start whipping up a PCB, and working on a custom enclosure. Or, you could skip all that, and just follow [Simon]’s example instead.
The trick to building a Nixie clock fast is quite simple — just get yourself a frequency counter that uses Nixie tubes for the display. [Simon] sourced a great example from American Machine and Foundry, also known as AMF, the company most commonly associated with America’s love of bowling.
The frequency counter does one thing, it counts the number of pulses in a second. Thus, if you squirt the right number of pulses to represent the time — say, 173118 pulses to represent 5:31 PM and 18 seconds — the frequency counter effectively becomes a clock. To achieve this, [Simon] just hooked an ESP32 up to the frequency counter and programmed it to get the current time from an NTP time server. It then spits out a certain number of pulses every second corresponding to the current time. The frequency counter displays the count… and there you have your Nixie clock!
On an old fashioned bench a signal generator was once an indispensable instrument, but has now largely been supplanted by the more versatile function generator. Sometimes there’s a less demanding need for a clock signal though, and one way that might be served comes from [Rupin Chheda]’s square wave generator. It’s a small PCB designed to sit at the end of a breadboard and provide handy access to a range of clocks.
On the board is a crystal oscillator running at the usual digital clock frequency of 32.768 kHz, and a CMOS divider chain. This provides frequencies from 2048 Hz down to 0.5 Hz for good measure. It’s a simple but oh-so-useful board, and we can imagine more than a few of you finding space for it on your own benches.
Entries keep ticking in for the One Hertz Challenge, some more practical than others. [Pierre-Loup M.]’s One Hertz SculptureĀ has no pretensions of being anything but pretty, but we can absolutely respect the artistic impulse behind it.
The sculpture is a free-form circuit inside of a picture frame. There are 9 LEDs in a ring with a few other components to produce a reverse-chase effect (one going dark at a time) taking about 1 second to circle the sculpture. As far as free-form circuit art goes, it’s handsomely done, but as this is Hackaday it’s probably the electronics, rather that the aesthetics that are of interest.
The circuit is an example of a ring oscillator: a cascading chain of NOT gates, endlessly feeding into and inverting one
Without timing it, it looks like 1 Hz, even if we know it’s not.
another. The NOT gates are implemented in resistor-transistor logic with 2N3904 NPN transistors, nine in total. Of course the inverter delay of this sort of handmade logic gate is far too fast for an aesthetically pleasing (or visible) chase, so some extra circuitry is needed to slow down the oscillations to something less than the 5 MHz it would naturally do. This is affected by pairing every transistor with an RC oscillator. Ideally the RC oscillator would have a 0.111..s period (1/9th of a second), but a few things got in the way of that. The RC oscillator isn’t oscillating in a vacuum, and interactions with the rest of the circuit have it running just a little bit fast. That’s really of no matter; a simple oscillator circuit like this wasn’t going to be a shoe in for the accuracy-based Time Lords category of this contest. As a sculpture and not a clock, you’re not going to notice it isn’t running at exactly 1Hz. (Though a ring-oscillator based clock would be a sight indeed.)
Making an LED blink is usually achieved by interrupting its power supply, This can be achieved through any number of oscillator circuits, or even by means of a mechanical system and a switch. For the 2025 One Hertz Challenge though, [jeremy.geppert] has eschewed such means. Instead his LED is always on, and is made to flash by interrupting its light beam with a gap once a second.
This mechanical solution is achieved via a disk with a hole in it, rotating once a second. This is driven from a gear mounted on a 4.8 RPM geared synchronous motor, and the hack lies in getting those gears right. They’re laser cut from ply, from an SVG generated using an online gear designer. The large gear sits on the motor and the small gear on the back of the disk, which is mounted on a bearing. When powered up it spins at 60 RPM, and the LED flashes thus once a second.
We like this entry for its lateral thinking simplicity. The awesome 2025 One Hertz Challenge is still ongoing, so there is still plenty of time for you to join the fun!
Learning Morse Code is no longer a requirement for HAMs in many jurisdictions, but it’s still a nice skill to have. [I_void(warranties)] wanted to learn, but couldn’t find a trainer that fit his style. What to do but build it yourself? Since we’re in the midst of a challenge, he took up the gauntlet and turned his need to learn Morse into a 1 hertz Morse code game.
In concept it is quite simple: a message beeps out in Morse, with a corresponding LED flash, all in one second. The player then has one second to type think they heard. Get it done fast enough, and a character LCD will tell you if you scored.
The project is based around an Arduino Nano; thanks to easily-available libraries, a PS/2 keyboard can serve as input and a 2×16 LCD as feedback with no real effort expended. For the audible component of the Morse challenge, an 8-ohm speaker is driven right off a pin on the Arduino. We won’t claim this efficient design only took one second to put together, but it probably didn’t take too long.
Of course this trainer, unlike some we’ve seen, only helps you learn to listen to the stream of dots and dashes. None of the others ever tried to fit a One Hertz theme, or [I_void(warranties)]’s particular learning style. For some, decoupling send and receive might be just the ticket to finally learning Morse one second at a time.