The Amstrad E-m@iler, The Right Product With The Wrong Business Model

One of the joys of the UK’s Electromagnetic Field hacker camp lies in the junk table, where trash turns to treasure in the blink of an eye. This year I returned relatively unscathed from my few days rifling through the tables,but I did snag a few pieces. One of them is a wired telephone, which would be a fairly unremarkable find were it not for its flip-up LCD screen and QWERTY keyboard.

My prize is a 2002 Amstrad E-m@iler Plus, one of a series of internet-equipped telephones from the British budget electronics company. The device itself and the story behind it make for a fascinating tale of a dotcom-era Internet flop, and a piece of hardware that could almost tempt today’s hackers.

You’ve Heard Of The Dotcom Boom, But Have You Heard Of The Hardware?

In the late 1990s, everything was about the Internet, but seemingly few outside the kind of people who read Hackaday really understood what it was really about. I’ve written before on these page about how hype blinded the CD-ROM industry to the shortcomings of its technology, but while that had in reality only gripped the publishing business, the Internet hype which followed had everyone in its thrall. You’re probably familiar with the story of the dotcom boom and crash as startup companies raised millions on shaky foundations before folding when they couldn’t deliver, but in parallel with that there was also a parallel world for hardware. The future was going to be connected, but on what and whose hardware would that connection happen? Continue reading “The Amstrad E-m@iler, The Right Product With The Wrong Business Model”

The Book That Could Have Killed Me

It is funny how sometimes things you think are bad turn out to be good in retrospect. Like many of us, when I was a kid, I was fascinated by science of all kinds. As I got older, I focused a bit more, but that would come later. Living in a small town, there weren’t many recent science and technology books, so you tended to read through the same ones over and over. One day, my library got a copy of the relatively recent book “The Amateur Scientist,” which was a collection of [C. L. Stong’s] Scientific American columns of the same name. [Stong] was an electrical engineer with wide interests, and those columns were amazing. The book only had a snapshot of projects, but they were awesome. The magazine, of course, had even more projects, most of which were outside my budget and even more of them outside my skill set at the time.

If you clicked on the links, you probably went down a very deep rabbit hole, so… welcome back. The book was published in 1960, but the projects were mostly from the 1950s. The 57 projects ranged from building a telescope — the original topic of the column before [Stong] took it over — to using a bathtub to study aerodynamics of model airplanes.

X-Rays

[Harry’s] first radiograph. Not bad!
However, there were two projects that fascinated me and — lucky for me — I never got even close to completing. One was for building an X-ray machine. An amateur named [Harry Simmons] had described his setup complaining that in 23 years he’d never met anyone else who had X-rays as a hobby. Oddly, in those days, it wasn’t a problem that the magazine published his home address.

You needed a few items. An Oudin coil, sort of like a Tesla coil in an autotransformer configuration, generated the necessary high voltage. In fact, it was the Ouidn coil that started the whole thing. [Harry] was using it to power a UV light to test minerals for flourescence. Out of idle curiosity, he replaced the UV bulb with an 01 radio tube. These old tubes had a magnesium coating — a getter — that absorbs stray gas left inside the tube.

Continue reading “The Book That Could Have Killed Me”

Taking A Look Underneath The Battleship New Jersey

By the time you read this the Iowa-class battleship USS New Jersey (BB-62) should be making its way along the Delaware River, heading back to its permanent mooring on the Camden waterfront after undergoing a twelve week maintenance and repair period at the nearby Philadelphia Navy Yard.

The 888 foot (270 meter) long ship won’t be running under its own power, but even under tow, it’s not often that you get to see one of the world’s last remaining battleships on the move. The New Jersey’s return home will be a day of celebration, with onlookers lining the banks of the Delaware, news helicopters in the air, and dignitaries and veterans waiting eagerly to greet her as she slides up to the pier.

But when I got the opportunity to tour the New Jersey a couple weeks ago and get a first-hand look at the incredible preservation work being done on this historic ship, it was a very different scene. There was plenty of activity within the cavernous Dry Dock #3 at the Navy Yard, the very same slip where the ship’s construction was completed back in 1942, but little fanfare. Staff from North Atlantic Ship Repair, the company that now operates the facility, were laboring feverishly over the weekend to get the ship ready.

While by no means an exhaustive account of the work that was done on the ship during its time in Dry Dock #3, this article will highlight some of the more interesting projects that were undertaken while it was out of the water. After seeing the thought and effort put into every aspect of the ship’s preservation by curator Ryan Szimanski and his team, there’s no doubt that not only is the USS New Jersey in exceptionally capable hands, but that it will continue to proudly serve as a museum and memorial for decades to come.

Continue reading “Taking A Look Underneath The Battleship New Jersey

An Enigma Machine Built In Meccano

As far as model construction sets go, LEGO is by far the most popular brand for building not only pre-planned models but whatever the builder can imagine. There are a few others out there though, some with some interesting features. Meccano (or Erector in North America) is a construction set based around parts that are largely metal including its fasteners, which allows for a different approach to building models than other systems including the easy addition of electricity. [Craig], a member of the London Meccano Club, is demonstrating his model Enigma machine using this system for all of its parts and adding some electricity to make the circuitry work as well.

The original Enigma machine was an electronic cypher used by the German military in World War 2 to send coded messages. For the time, its code was extremely hard to break, and led to the British development of the first programmable electronic digital computer to help decipher its coded messages. This model uses Meccano parts instead to recreate the function of the original machine, with a set of keys similar to a typewriter which, when pressed, advance a set of three wheels. The wheels all have wiring in them, and depending on their initial settings will light up a different character on a display.

There are a few modifications made to the design (besides the use of a completely different set of materials) but one of the main ones was eliminating the heavy leaf springs of the original for smaller and easier-to-manage coil springs, which are also part of the electrical system that creates the code. The final product recreates the original exceptionally faithfully, with plans to create a plugboard up next, and you can take a look at the inner workings of a complete original here.

Continue reading “An Enigma Machine Built In Meccano”

Mechanic Prince Of Tides

Lord Kelvin’s name comes up anytime you start looking at the history of science and technology. In addition to working on transatlantic cables and thermodynamics, he also built an early computing device to predict tides. Kelvin, whose real name was William Thomson, became interested in tides in a roundabout way, as explained in a recent IEEE Spectrum article.

He’d made plenty of money on his patents related to the telegraph cable, but his wife died, so he decided to buy a yacht, the Lalla Rookh. He used it as a summer home. If you live on a boat, the tides are an important part of your day.

Today, you could just ask your favorite search engine or AI about the tides, but in 1870, that wasn’t possible. Also, in a day when sea power made or broke empires, tide charts were often top secret. Not that the tides were a total mystery. Newton explained what was happening back in 1687. Laplace realized they were tied to oscillations almost a century later. Thomson made a machine that could do the math Laplace envisioned.

We know today that the tides depend on hundreds of different motions, but many of them have relatively insignificant contributions, and we only track 37 of them, according to the post. Kelvin’s machine — an intricate mesh of gears and cranks — tracked only 10 components.

In operation, the user turned a crank, and a pen traced a curve on a roll of paper. A small mark showed the hour with a special mark for noon. You could process a year’s worth of tides in about 4 hours. While Kelvin received credit for the machine’s creation, he acknowledged the help of many others in his paper, from craftsmen to his brother.

We actually did a deep dive into tides, including Kelvin’s machine, a few years ago. He shows up a number of times in our posts.

Aiken’s Secret Computing Machines

This neat video from the [Computer History Archives Project] documents the development of the Aiken Mark I through Mark IV computers. Partly shrouded in the secrecy of World War II and the Manhattan Project effort, the Mark I, “Harvard’s Robot Super Brain”, was built and donated by IBM, and marked their entry into what we would now call the computer industry.

Numerous computing luminaries used the Mark I, aside from its designer Howard Aiken. Grace Hopper, Richard Bloch, and even John von Neumann all used the machine. It was an electromechanical computer, using gears, punch tape, relays, and a five horsepower motor to keep it all running in sync. If you want to dig into how it actually worked, the deliciously named patent “Calculator” goes into some detail.

The video goes on to tell the story of Aiken’s various computers, the rift between Harvard and IBM, and the transition of computation from mechanical to electronic. If this is computer history that you don’t know, it’s well worth a watch. (And let us know if you also think that they’re using computer-generated speech to narrate it.)

If “modern” computer history is more your speed, check out this documentary about ENIAC.

Continue reading “Aiken’s Secret Computing Machines”

The Tragic Story Of The Ill-Fated Supergun

In the annals of ambitious engineering projects, few have captured the imagination and courted controversy quite like Gerald Bull’s Supergun. Bull, a Canadian artillery expert, envisioned a gun that could shoot payloads directly into orbit. In time, his ambition led him down a path that ended in both tragedy and unfinished business.

Depending on who you talk to, the Supergun was either a new and innovative space technology, or a weapon of war so dangerous, it couldn’t be allowed to exist. Ultimately, the powers that be intervened to ensure we would never find out either way.

Continue reading “The Tragic Story Of The Ill-Fated Supergun”