Mechanisms: Tension Control Bolts

If there’s an enduring image of how large steel structures used to be made, it’s probably the hot riveting process. You’ve probably seen grainy old black-and-white films of a riveting gang — universally men in bib overalls with no more safety equipment than a cigarette, heating rivets to red heat in a forge and tossing them up to the riveters with a pair of tongs. There, the rivet is caught with a metal funnel or even a gloved hand, slipped into a waiting hole in a flange connecting a beam to a column, and beaten into submission by a pair of men with pneumatic hammers.

Dirty, hot, and dangerous though the work was, hot riveted joints were a practical and proven way to join members together in steel structures, and chances are good that any commercial building that dates from before the 1960s or so has at least some riveted joints. But times change and technology marches on, and riveted joints largely fell out of fashion in the construction trades in favor of bolted connections. Riveting crews of three or more men were replaced by a single ironworker making hundreds of predictable and precisely tensioned connections, resulting in better joints at lower costs.

Bolted joints being torqued to specs with an electric wrench might not have the flair of red-hot rivets flying around the job site, but they certainly have a lot of engineering behind them. And as it turns out, the secret to turning bolting into a one-person job is mostly in the bolt itself.

Continue reading “Mechanisms: Tension Control Bolts”

What Happens If You Speedrun Making A CPU?

Usually, designing a CPU is a lengthy process, especially so if you’re making a new ISA too. This is something that can take months or even years before you first get code to run. But what if it wasn’t? What if one were to try to make a CPU as fast as humanly possible? That’s what I asked myself a couple weeks ago.

Left-to-right: Green, orange and red rectangle with 1:2 aspect ratio. Each rectangle further right has 4x the area of its neighbor on the left.
Relative ROM size. Left: Stovepipe, center: [Ben Eater]’s, right: GR8CPU Rev. 2
Enter the “Stovepipe” CPU (I don’t have an explanation for that name other than that I “needed” one). Stovepipe’s hardware was made in under 4 hours, excluding a couple small bugfixes. I started by designing the ISA, which is the simplest ISA I ever made. Instead of continuously adding things to make it more useful, I removed things that weren’t strictly necessary until I was satisfied. Eventually, all that was left were 8 major opcodes and a mere 512 bits to represent it all. That is far less than GR8CPU (8192 bit), my previous in this class of CPU, and still less than [Ben Eater]’s breadboard CPU (2048 bit), which is actually less flexible than Stovepipe. All that while taking orders of magnitude less time to create than either larger CPU. How does that compare to other CPUs? And: How is that possible?
Continue reading “What Happens If You Speedrun Making A CPU?”

Hacker Tactic: Building Blocks

The software and hardware worlds have overlaps, and it’s worth looking over the fence to see if there’s anything you missed. You might’ve already noticed that we hackers use PCB modules and devboards in the same way that programmers might use libraries and frameworks. You’ll find way more parallels if you think about it.

Building blocks are about belonging to a community, being able to draw from it. Sometimes it’s a community of one, but you might just find that building blocks help you reach other people easily, touching upon common elements between projects that both you and some other hacker might be planning out. With every building block, you make your or someone else’s next project quicker, and maybe you make it possible.

Sometimes, however, building blocks are about being lazy.

Continue reading “Hacker Tactic: Building Blocks”

A Hacker’s Travel Guide To Europe

This summer, I was pleasantly surprised when a friend of mine from Chicago turned up at one of the hacker camps I attended. A few days of hanging out in the sun ensued, doing cool hacker camp stuff, drinking unusual beverages, and generally having fun. It strikes me as a shame that this is such a rare occurrence, and since Hackaday is an American organisation and I am in a sense writing from its European outpost, I should do what I can to encourage my other friends from the USA and other parts of the world to visit. So here I’m trying to write a hacker’s guide to visiting Europe, in the hope that I’ll see more of you at future camps and other events.

It’s Intimidating. But Don’t Worry.

Danish road sign: "Se efter tog", or according to Google Translate: "Look for trains".
Yes. We’d find this intimidating, too. Bewitchedroutine, Public domain.

First of all, I know that it’s intimidating to travel to an unfamiliar place where the language and customs may be different. I’m from England, which sits on a small island in the North Atlantic, and believe it or not it’s intimidating for us to start traveling too. It involves leaving the safety of home and crossing the sea whether by flight, ferry, or tunnel, and that lies outside one’s regular comfort zone.

Americans live in a country that’s almost a continent in its own right, so you can satisfy your travel lust without leaving home. Thus of course the idea of landing in Germany or the Netherlands is intimidating. But transatlantic flights are surprisingly cheap in the scheme of international travel because of intense competition, so I’m here to reassure you that you can travel my continent ‘s hacker community without either feeling out of your depth, or breaking the bank.

Continue reading “A Hacker’s Travel Guide To Europe”

Mining And Refining: Mine Dewatering

From space, the most striking feature of our Pale Blue Dot is exactly what makes it blue: all that water. About three-quarters of the globe is covered with liquid water, and our atmosphere is a thick gaseous soup laden with water vapor. Almost everywhere you look there’s water, and even where there’s no obvious surface water, chances are good that more water than you could use in a lifetime lies just below your feet, and accessing it could be as easy as an afternoon’s work with a shovel.

And therein lies the rub for those who delve into the Earth’s depths for the minerals and other resources we need to function as a society — if you dig deep enough, water is going to become a problem. The Earth’s crust holds something like 44 million cubic kilometers of largely hidden water, and it doesn’t take much to release it from the geological structures holding it back and restricting its flow. One simple mineshaft chasing a coal seam or a shaft dug in the wrong place, and suddenly all the hard-won workings are nothing but flooded holes in the ground. Add to that the enormous open-pit mines dotting the surface of the planet that resemble nothing so much as empty lakes waiting to fill back up with water if given a chance, and the scale of the problem water presents to mining operations becomes clear.

Dewatering mines is a complex engineering problem, one that intersects and overlaps multiple fields of expertise. Geotechnical engineers work alongside mining engineers, hydrogeologists, and environmental engineers to devise cost-effective ways to control the flow of water into mines, redirect it when they can, and remove it when there’s no alternative.

Continue reading “Mining And Refining: Mine Dewatering”

Tech In Plain Sight: Tasers Shooting Confetti

One of the standard tropes in science fiction is some kind of device that can render someone unconscious — you know, like a phaser set to stun. We can imagine times when being aggressively knocked out would lead to some grave consequences, but — we admit — it is probably better than getting shot. However, we don’t really have any reliable technology to do that today. However, if you’ve passed a modern-day policeman, you’ve probably noticed the Taser on their belt. While this sounds like a phaser, it really isn’t anything like it. It is essentially a stun gun with a long reach thanks to a wire with a dart on the end that shoots out of the gun-like device and shocks the target at a distance. Civilian Tasers have a 15-foot long wire, while law enforcement can get longer wires. But did you know that modern Tasers also fire confetti?

A Taser cartridge and some AFIDs

It sounds crazy, and it isn’t celebratory. The company that makes the Taser — formerly, the Taser company but now Axon — added the feature because of a common complaint law enforcement had with the device. Interestingly, many things that might be used in comitting a crime are well-understood. Ballistics can often identify that a bullet did or did not come from a particular weapon, for example. Blood and DNA on a scene can provide important clues. Even typewriters and computer printers can be identified by variations in their printing. But if you fire a taser, there’s generally little evidence left behind.

Continue reading “Tech In Plain Sight: Tasers Shooting Confetti”

Experimenting With MicroPython On The Bus Pirate 5

I recently got one of the new RP2040-based Bus Pirate 5 (BP5), a multi-purpose interface debugging and testing tool. Scanning the various such tools in my toolbox already: an Analog Discovery 2, a new Glasgow Interface Explorer, and a couple of pyboards, I realized they all had a Python or MicroPython user interface. A few people on the BP5 forums had tossed around the idea of MicroPython, and it just so happened that I was experimenting with building beta versions of MicroPython for a RP2350 board at the time. Naturally, I started wondering, “just how hard can it be to get MicroPython running on the BP5?”

The Lazy Approach

Rather than duplicating the BP5 firmware functionality, I decided to ignore it completely and go with existing MicroPython capabilities. I planned to just make a simple set of board definition files — perhaps Board Support Package (BSP) is a better term? I’ve done this a dozen times before for development and custom boards. Then write a collection of MicroPython modules to conform to the unique aspects in the BP5 hardware. As user [torwag] over on the Bus Pirate forums said back in March:

Micropython comes already with some modules and enough functions to get some stuff out-of-the-box working. E.g. the infamous version of “hello world” for microcontrollers aka led-blinking.

Continue reading “Experimenting With MicroPython On The Bus Pirate 5”