Remembering Peter Higgs And The Gravity Of His Contributions To Physics

There are probably very few people on this globe who at some point in time haven’t heard the term ‘Higgs Boson’  zip past, along with the term ‘God Particle’. As during the 2010s the scientists at CERN were trying to find evidence for the existence of this scalar boson and with it evidence for the existence of the Higgs field that according to the Standard Model gives mass to gauge bosons like photons, this effort got communicated in the international media and elsewhere in a variety of ways.

Along with this media frenzy, the physicist after whom the Higgs boson was named also gained more fame, despite Peter Higgs already having been a well-known presence in the scientific community for decades by that time until his retirement in 1996. With Peter Higgs’ recent death after a brief illness at the age of 94, we are saying farewell to one of the big names in physics. Even if not a household name like Einstein and Stephen Hawking, the photogenic hunt for the Higgs boson ended up highlighting a story that began in the 1960s with a series of papers.

Continue reading “Remembering Peter Higgs And The Gravity Of His Contributions To Physics”

Chandra X-ray Observatory Threatened By Budget Cuts

Launched aboard the Space Shuttle Columbia in July of 1999, the Chandra X-ray Observatory is the most capable space telescope of its kind. As of this writing, the spacecraft is in good health and is returning valuable scientific data. It’s currently in an orbit that extends at its highest point to nearly one-third the distance to the Moon, which gives it an ideal vantage point from which to make its observations, and won’t reenter the Earth’s atmosphere for hundreds if not thousands of years.

Yet despite this rosy report card, Chandra’s future is anything but certain. Faced with the impossible task of funding all of its scientific missions with the relative pittance they’re allocated from the federal government, NASA has signaled its intent to wind down the space telescope’s operations over the next several years. According to their latest budget request, the agency wants to slash the program’s $41 million budget nearly in half for 2026. Funding would remain stable at that point for the next two years, but in 2029, the money set aside for Chandra would be dropped to just $5.2 million.

Drastically reducing Chandra’s budget by the end of the decade wouldn’t be so unexpected if its successor was due to come online in a similar time frame. Indeed, it would almost be expected. But despite being considered a high scientific priority, the x-ray observatory intended to replace Chandra isn’t even off the drawing board yet. The 2019 concept study report for what NASA is currently calling the Lynx X-ray Observatory estimates a launch date in the mid-2030s at the absolute earliest, pointing out that several of the key components of the proposed telescope still need several years of development before they’ll reach the necessary Technology Readiness Level (TRL) for such a high profile mission.

With its replacement for this uniquely capable space telescope decades away even by the most optimistic of estimates, the  potential early retirement of the Chandra X-ray Observatory has many researchers concerned about the gap it will leave in our ability to study the cosmos.

Continue reading “Chandra X-ray Observatory Threatened By Budget Cuts”

How DEC’s LANBridge 100 Gave Ethernet A Fighting Chance

Alan Kirby (left) and Mark Kempf with the LANBridge 100, serial number 0001. (Credit: Alan Kirby)
Alan Kirby (left) and Mark Kempf with the LANBridge 100, serial number 0001. (Credit: Alan Kirby)

When Ethernet was originally envisioned, it would use a common, shared medium (the ‘Ether’ part), with transmitting and collision resolution handled by the carrier sense multiple access with collision detection (CSMA/CD) method. While effective and cheap, this limited Ethernet to a 1.5 km cable run and 10 Mb/s transfer rate. As [Alan Kirby] worked at Digital Equipment Corp. (DEC) in the 1980s and 1990s, he saw how competing network technologies including Fiber Distributed Data Interface (FDDI) – that DEC also worked on – threatened to extinguish Ethernet despite these alternatives being more expensive. The solution here would be store-and-forward switching, [Alan] figured.

After teaming up with Mark Kempf, both engineers managed to convince DEC management to give them a chance to develop such a switch for Ethernet, which turned into the LANBridge 100. As a so-called ‘learning bridge’, it operated on Layer 2 of the network stack, learning the MAC addresses of the connected systems and forwarding only those packets that were relevant for the other network. This instantly prevented collisions between thus connected networks, allowed for long (fiber) runs between bridges and would be the beginning of the transformation of Ethernet as a shared medium (like WiFi today) into a star topology network, with each connected system getting its very own Ethernet cable to a dedicated switch port.

Double-Checking NASA’s Eclipse Estimate At Home

If you were lucky enough to be near the path of totality, and didn’t have your view obscured by clouds, yesterday’s eclipse provided some very memorable views. But you know what’s even better than making memories? Having cold hard data to back it up.

Hackaday contributor [Bob Baddeley] was in Madison, Wisconsin for the big event, which NASA’s Eclipse Explorer website predicted would see about 87% coverage. Watching the eclipse through the appropriate gear at the local hackerspace was fun, but the real nerding out happened when he got home and could pull the data from his solar system.

A graph of the system’s generated power shows a very clear dip during the duration of the eclipse, which let him determine exactly when the occlusion started, peaked, and ended.

Continue reading “Double-Checking NASA’s Eclipse Estimate At Home”

The Rise And Fall Of Silicon Graphics

Maybe best known as the company which brought a splash of color to corporate and scientific computing with its Indigo range of computer systems, Silicon Graphics Inc. (later SGI) burst onto the market in 1981 with what was effectively one of the first commercial graphics operations accelerator with the Geometry Engine. SGI’s founder – James Henry Clark was quite possibly as colorful a character as the company’s products, with [Bradford Morgan White] covering the years leading up to SGI’s founding, its highlights and its eventual demise in 2009.

The story of SGI is typical of a start-up that sees itself become the market leader for years, even as this market gradually changes. For SGI it was the surge in commodity 3D graphics cards in the 1990s alongside affordable (and cluster-capable; insert Beowulf cluster jokes here) server hardware that posed a major problem. Eventually it’d start offering Windows NT workstations, drop its MIPS-based systems in a shift to Intel’s disastrous Itanium range of CPUs and fall to the last-ditch effort of any struggling company: a logo change.

None of this was effective, naturally, and ultimately SGI would file (again) for Chapter 11 bankruptcy in 2009, with Rackable Systems snapping up its assets and renaming itself to SGI, before getting bought out by HPE and sunsetting SGI as a brand name.

Heating Mars On The Cheap

Mars is fairly attractive as a potential future home for humanity. It’s solid, with firm land underfoot. It’s able to hang on to a little atmosphere, which is more than you can say about the moon. It’s even got a day/night cycle remarkably close to our own. The only problem is it’s too darn cold, and there’s not a lot of oxygen to breathe, either.

Terraforming is the concept of fixing problems like these on a planet-wide scale. Forget living in domes—let’s just make the whole thing habitable!

That’s a huge task, so much current work involves exploring just what we could achieve with today’s technology. In the case of Mars, [Casey Handmer] doesn’t have a plan to terraform the whole planet. But he does suggest we could potentially achieve significant warming of the Red Planet for $10 billion in just 10 years. Continue reading “Heating Mars On The Cheap”

How To Properly Patch Your Iowa-Class Battleship

There’s a saying among recreational mariners that the word “boat” is actually an acronym for “bring out another thousand”, as it seems you can’t operate one for long without committing to expensive maintenance and repairs. But this axiom isn’t limited to just civilian pleasure craft, it also holds true for large and complex vessels — although the bill generally has a few more zeros at the end.

Consider the USS New Jersey (BB-62), an Iowa-class battleship that first served in the Second World War and is now operated as a museum ship. Its recent dry docking for routine repair work has been extensively documented on YouTube by curator [Ryan Szimanski], and in the latest video, he covers one of the most important tasks crews have to attend to while the ship is out of the water: inspecting and repairing the hundreds of patches that line the hull.

These patches aren’t to repair damage, but instead cover up the various water inlets and outlets required by onboard systems. When New Jersey was finally decommissioned in 1991, it was hauled out of the water and plates were welded over all of these access points to prevent any potential leaks. But as the Navy wanted to preserve the ship so it could potentially be reactivated if necessary, care was taken to make the process reversible.

Continue reading “How To Properly Patch Your Iowa-Class Battleship”