Boss Byproducts: Corium Is Man-Made Lava

So now we’ve talked about all kinds of byproducts, including man-made (Fordite), nature-made (fulgurites), and one that’s a little of both (calthemites). Each of these is beautiful in its own way, but I’m not sure about the beauty and merit of corium — that which is created in a nuclear reactor core during a meltdown.

A necklace made to look like corium.
A necklace made to look like corium. Image via OSS-OSS

Corium has the consistency of lava and is made up of many things, including nuclear fuel, the products of fission, control rods, any structural parts of the reactor that were affected, and products of those parts’ reaction with the surrounding air, water, and steam.

If the reactor vessel itself is breached, corium can include molten concrete from the floor underneath. That said, if corium is hot enough, it can melt any concrete it comes in contact with.

So, I had to ask, is there corium jewelry? Not quite. Corium is dangerous and hard to come by. But that doesn’t stop artisans from imitating the substance with other materials.

Continue reading “Boss Byproducts: Corium Is Man-Made Lava”

Humans Can Learn Echolocation Too

Most of us associate echolocation with bats. These amazing creatures are able to chirp at frequencies beyond the limit of our hearing, and they use the reflected sound to map the world around them. It’s the perfect technology for navigating pitch-dark cave systems, so it’s understandable why evolution drove down this innovative path.

Humans, on the other hand, have far more limited hearing, and we’re not great chirpers, either. And yet, it turns out we can learn this remarkable skill, too. In fact, research suggests it’s far more achievable than you might think—for the sighted and vision impaired alike!

Continue reading “Humans Can Learn Echolocation Too”

Apollo-era PCB Reverse Engineering To KiCad

Earlier this year [Skyhawkson] got ahold of an Apollo-era printed circuit board which he believes was used in a NASA test stand. He took high quality photos of both sides of the board and superimposed them atop each other. After digging into a few obsolete parts from the 1960s, he was able to trace out the connections. I ran across the project just after making schematics for the Supercon badge and petal matrix. Being on a roll, I decided to take [Skyhawkson]’s work as a starting point and create KiCad schematics. Hopefully we can figure out what this circuit board does along the way.

The board is pretty simple:

  • approximately 6.5 x 4.5 inches
  • 22 circuit edge connector 0.156 in pitch
  • 31 ea two-terminal parts ( resistors, diodes )
  • 3 ea trimmer potentiometers
  • 7 ea transistors
  • parts arranged in 4 columns

Continue reading “Apollo-era PCB Reverse Engineering To KiCad”

There’s Now A Wiki For Hacking Redbox Machines

With the rapidly evolving situation surrounding the Redbox vending machines still out in the wild, it’s about time somebody put together a Wiki to keep it all straight.

The unredbox wiki has information on the various different hardware revisions that Redbox put out into the wild, from the regular outdoor machines to the weird indoor blue variant. The site also has breakdowns on individual components. For example, it covers the computers inside the machines, built by Dell, Lenovo, and Premio, and bits and pieces like the DVD carousel and the modems used inside.

Basically, if you’re working with these machines and you don’t have a manual, this resource could help you out.  As could the neat video below that shows the internals of a Redbox machine during the reloading process.

Whatever you do, though, don’t steal the kiosks. There’s folks handling that already, you’re not allowed to just walk up and haul them away. Check out our earlier coverage of people that are still out there renting from these machines, too.

Continue reading “There’s Now A Wiki For Hacking Redbox Machines”

Rendering of a JetZero blended wing body aircraft with US Air Force markings. (Credit: US Air Force)

Blended Wing Body Passenger Airplanes And The End Of Winged Tubes

The SR-71 with its blended wing body design. (Photo by Tech. Sgt. Michael Haggerty, US Air Force, 1988)
The SR-71 with its blended wing body design. (Photo by Tech. Sgt. Michael Haggerty, US Air Force, 1988)

Ask someone to picture an airplane and they’re likely to think of what is essentially a tube with wings and a stabilizing tail tacked onto one end of said tube. Yet it is also no secret that the lift produced by such a tube is rather poor, even if they’re straightforward for loading cargo (static and self-loading) into them and for deciding where to put in windows. Over the decades a number of alternative airplane designs have been developed, with some of them also ending up being produced. Here most people are probably quite familiar with the US Air Force’s B-2 Spirit bomber and its characteristic flying wing design, while blended wing body (BWB) maintains a somewhat distinctive fuselage, as with for example the B-1 Lancer.

Outside of military airplanes BWBs are a pretty rare sight. Within the world of passenger airplanes the tube-with-wings pattern that the first ever passenger airplanes adopted has persisted with the newest designs, making it often tricky to distinguish one airplane from another. This could soon change, however, with a strong interest within the industry for passenger-oriented BWBs. The reason for this are the significant boosts in efficiency, quieter performance and more internal (useful) volume, which makes airline operators very happy, but which may also benefit passengers.

With that said, how close are we truly to the first BWB passenger airplane delivery to an airline?

Continue reading “Blended Wing Body Passenger Airplanes And The End Of Winged Tubes”

With Core ONE, Prusa’s Open Source Hardware Dream Quietly Dies

Yesterday, Prusa Research officially unveiled their next printer, the Core ONE. Going over the features and capabilities of this new machine, it’s clear that Prusa has kept a close eye on the rapidly changing desktop 3D printer market and designed a machine to better position themselves within a field of increasingly capable machines from other manufacturers.

While some saw the incremental upgrades of the i3 MK4 as being too conservative, the Core ONE ticks all the boxes of what today’s consumer is looking for — namely high-speed CoreXY movement with a fully enclosed chamber — while still offering the build quality, upgradability, and support that the company has built its reputation on. Put simply it’s one of the most exciting products they’ve introduced in a long time, and exactly the kind of machine that many Prusa fans have been waiting for.

Unfortunately, there’s one feature that’s ominously absent from the Core ONE announcement post. It’s easy to overlook, and indeed, most consumers probably won’t even know it’s missing. But for those of us who are concerned with such matters, it’s an unspoken confirmation that an era has finally come to an end.

With the Core ONE, Prusa Research is no longer in the business of making open source 3D printer hardware, but that doesn’t mean that the printer isn’t hackable. It’s complicated, so read on.

Continue reading “With Core ONE, Prusa’s Open Source Hardware Dream Quietly Dies”

Boss Byproducts: Calthemites Are Man-Made Cave Dwellers

Some lovely orange calthemite flowstone colored so by iron oxide from rusting steel reinforcing.
Some lovely orange calthemite flowstone colored so by iron oxide from rusting steel reinforcing. Image via Wikipedia

At this point, we’ve learned about man-made byproducts and nature-made byproducts. But how about one that’s a little of both? I’m talking about calthemites, which are secondary deposits that form in those man-made caves such as parking garages, mines, and tunnels.

Calthemites grow both on and under these structures in forms that mimic natural cave speleothems like stalactites, stalagmites, flowstone, and so on. They are often the result of an hyperalkalinic solution of pH 9-14 seeping through a concrete structure to the point of coming into contact with the air on the underside. Here, carbon dioxide in the air facilitates the necessary reactions to secondarily deposit calcium carbonate.

These calcium carbonate deposits are usually white, but can be colored red, orange, or yellow thanks to iron oxide. If copper pipes are around, copper oxide can cause calthemites to be blue or green. As pretty as all that sounds, I didn’t find any evidence of these parking garage growths having been turned into jewelry. So there’s your million-dollar idea.

Continue reading “Boss Byproducts: Calthemites Are Man-Made Cave Dwellers”