Rubik’s WOWCube: What Really Makes A Toy?

If there ever was a toy that enjoys universal appeal and recognition, the humble Rubik’s Cube definitely is on the list. Invented in 1974 by sculptor and professor of architecture Ernő Rubik with originally the name of Magic Cube, it features a three-by-three grid of colored surfaces and an internal mechanism which allows for each of these individual sections of each cube face to be moved to any other face. This makes the goal of returning each face to its original single color into a challenge, one which has both intrigued and vexed many generations over the decades. Maybe you’ve seen one?

Although there have been some variations of the basic 3×3 grid cube design over the years, none have been as controversial as the recently introduced WOWCube. Not only does this feature a measly 2×2 grid on each face, each part of the grid is also a display that is intended to be used alongside an internal processor and motion sensors for digital games. After spending many years in development, the Rubik’s WOWCube recently went up for sale at $299, raising many questions about what market it’s really targeting.

Is the WOWCube a ‘real’ Rubik’s Cube, and what makes something into a memorable toy and what into a mere novelty gadget that is forgotten by the next year like a plague of fidget spinners?

Continue reading “Rubik’s WOWCube: What Really Makes A Toy?”

The Great Northeast Blackout Of 1965

At 5:20 PM on November 9, 1965, the Tuesday rush hour was in full bloom outside the studios of WABC in Manhattan’s Upper West Side. The drive-time DJ was Big Dan Ingram, who had just dropped the needle on Jonathan King’s “Everyone’s Gone to the Moon.” To Dan’s trained ear, something was off about the sound, like the turntable speed was off — sometimes running at the usual speed, sometimes running slow. But being a pro, he carried on with his show, injecting practiced patter between ad reads and Top 40 songs, cracking a few jokes about the sound quality along the way.

Within a few minutes, with the studio cart machines now suffering a similar fate and the lights in the studio flickering, it became obvious that something was wrong. Big Dan and the rest of New York City were about to learn that they were on the tail end of a cascading wave of power outages that started minutes before at Niagara Falls before sweeping south and east. The warbling turntable and cartridge machines were just a leading indicator of what was to come, their synchronous motors keeping time with the ever-widening gyrations in power line frequency as grid operators scattered across six states and one Canadian province fought to keep the lights on.

They would fail, of course, with the result being 30 million people over 80,000 square miles (207,000 km2) plunged into darkness. The Great Northeast Blackout of 1965 was underway, and when it wrapped up a mere thirteen hours later, it left plenty of lessons about how to engineer a safe and reliable grid, lessons that still echo through the power engineering community 60 years later.

Continue reading “The Great Northeast Blackout Of 1965”

Reshaping Eyeballs With Electricity, No Lasers Or Cutting Required

Glasses are perhaps the most non-invasive method of vision correction, followed by contact lenses. Each have their drawbacks though, and some seek more permanent solutions in the form of laser eye surgeries like LASIK, aiming to reshape their corneas for better visual clarity. However, these methods often involve cutting into the eye itself, and it hardly gets any more invasive than that.

A new surgical method could have benefits in this regard, allowing correction in a single procedure that requires no lasers and no surgical cutting of the eye itself. The idea is to use electricity to help reshape the eye back towards greater optical performance.

Continue reading “Reshaping Eyeballs With Electricity, No Lasers Or Cutting Required”

Smart Bulbs Are Turning Into Motion Sensors

If you’ve got an existing smart home rig, motion sensors can be a useful addition to your setup. You can use them for all kinds of things, from turning on lights when you enter a room, to shutting off HVAC systems when an area is unoccupied. Typically, you’d add dedicated motion sensors to your smart home to achieve this. But what if your existing smart light bulbs could act as the motion sensors instead?

Continue reading “Smart Bulbs Are Turning Into Motion Sensors”

Airbags, And How Mercedes-Benz Hacked Your Hearing

Airbags are an incredibly important piece of automotive safety gear. They’re also terrifying—given that they’re effectively small pyrotechnic devices that are aimed directly at your face and chest. Myths have pervaded that they “kill more people than they save,” in part due a hilarious episode of The Simpsons. Despite this, they’re credited with saving tens of thousands of lives over the years by cushioning fleshy human bodies from heavy impacts and harsh decelerations.

While an airbag is generally there to help you, it can also hurt you in regular operation. The immense sound pressure generated when an airbag fires is not exactly friendly to your ears. However, engineers at Mercedes-Benz have found a neat workaround to protect your hearing from the explosive report of these safety devices. It’s a nifty hack that takes advantage of an existing feature of the human body. Let’s explore how air bags work, why they’re so darn loud, and how that can be mitigated in the event of a crash.

Continue reading “Airbags, And How Mercedes-Benz Hacked Your Hearing”

On 3D Scanners And Giving Kinects A New Purpose In Life

The concept of a 3D scanner can seem rather simple in theory: simply point a camera at the physical object you wish to scan in, rotate around the object to capture all angles and stitch it together into a 3D model along with textures created from the same photos. This photogrammetry application is definitely viable, but also limited in the sense that you’re relying on inferring three-dimensional parameters from a set of 2D images and rely on suitable lighting.

To get more detailed depth information from a scene you’d need to perform direct measurements, which can be done physically or through e.g. time-of-flight (ToF) measurements. Since contact-free ways of measurements tend to be often preferred, ToF makes a lot of sense, but comes with the disadvantage of measuring of only a single spot at a time. When the target is actively moving, you can fall back on photogrammetry or use an approach called structured-light (SL) scanning.

SL is what consumer electronics like the Microsoft Kinect popularized, using the combination of a visible and near-infrared (NIR) camera to record a pattern projected onto the subject, which is similar to how e.g. face-based login systems like Apple’s Face ID work. Considering how often Kinects have been used for generic purpose 3D scanners, this raises many questions regarding today’s crop of consumer 3D scanners, such as whether they’re all just basically Kinect-clones.

Continue reading “On 3D Scanners And Giving Kinects A New Purpose In Life”

Lost Techniques: Bond-out CPUs And In Circuit Emulation

These days, we take it for granted that you can connect a cheap piece of hardware to a microcontroller and have an amazing debugging experience. Stop the program. Examine memory and registers. You can see and usually change anything. There are only a handful of ways this is done on modern CPUs, and they all vary only by detail. But this wasn’t always the case. Getting that kind of view to an actual running system was an expensive proposition.

Today, you typically have some serial interface, often JTAG, and enough hardware in the IC to communicate with a host computer to reveal and change internal state, set breakpoints, and the rest. But that wasn’t always easy. In the bad old days, transistors were large and die were small. You couldn’t afford to add little debugging pins to each processor you produced.

This led to some very interesting workarounds. Of course, you could always run simulators on a larger computer. But that might not work in real time, and almost certainly didn’t have all the external things you wanted to connect to, unless you also simulated them. Continue reading “Lost Techniques: Bond-out CPUs And In Circuit Emulation”