A Digital Camera For The 1984 Market

Digital cameras are a ubiquitous consumer and professional product here in 2023, and because of the wide availability of parts it’s relatively straightforward to construct one for yourself. Four decades ago though, film was king, but that hasn’t stopped [Georg Lukas] from building a digital camera for the 1984 market. The hardware is definitely from recent years, the extremely affordable ESP32-cam board that many of us will have worked with already. Meanwhile the 1984 part lies in the recording format, it makes EGA 16-colour low-res pictures and stores them in the archaic TGA file format.

A low-res camera is fun, but there are two other angles on this which are definitely worth some time. The first is that his description and code are worth a read for anyone with an interest in programming an ESP32 camera, while the second invites us to consider whether such a camera could have been made using parts available in 1984. We remember camera peripherals for 8-bit microcomputers which were a C-mount lens positioned over a decapped RAM chip, and thus we can’t help wondering whether an RGB split to three of those sensors could have been constructed. Whether a 6502 or a Z80 with 64k of memory could have processed the three images into one is another matter, but at least if any of you want to try there’s a handy 1984 computer still popping up on eBay.

A Game Boy Camera, Without The Game Boy

We all know the Nintendo Game Boy camera peripheral, and we’ve seen plenty of hacks for it on these pages over the years. We like [Raphael Boichot]’s camera then, as instead of including a Game Boy or emulating one, it talks directly to the sensor from an RP2040. The result is a standalone camera with slightly better quality than the original, and with near-limitless storage and easy retrieval of pictures.

For us the interesting revelation from this project comes in the light it sheds on the sensor module, the Mitsubishi M64282FP, but it’s no slouch as a camera beside that. There are motion sensor and timelapse modes, as well the ability to take high dynamic range pictures, and as if that’s not enough it also has all the tweakable things you’d expect from a “proper” camera. The oldest adage in photography is that the best camera in the world is the one in your hand, and we’d say that this one’s better than a real Game Boy Camera should the once-in-a-lifetime picture come while you’re holding it.

Of course, a better Game Boy camera needs a better lens, right?

A Wigglegram Lens With Variable Aperture

Wigglegrams are those weird animated pictures you’ve seen that seem to generate a 3D-like effect. [scealux] had built lenses to take such pictures before, but wanted to take things to the next level. Enter the Wigglegram Lens, version 2.

In building a new lens for the Open Sauce ’23 event, [scealux] wanted to get variable aperture working, while also improving focus speed. The lens was also intended for use with a Sony A7R3. Unlike his previous effort, this lens would only work on the full-frame Sony FE mount cameras.

The lens uses a bevy of 3D printed parts, along with plastic lenses salvaged from old disposable cameras. When assembled, it takes three photos simultaneously on one single frame. They can then be reassembled into a Wigglegram by post-processing on a computer. The results are grainy and rough, but yet somehow compelling.

If you want to see [scealux]’s original build for Sony E-mount cameras, we covered it here. Video after the break.

Continue reading “A Wigglegram Lens With Variable Aperture”

A Shutter Speed Tester With Frickin’ Lasers!

Buying old cameras is one of the best ways yet found to part a geek from their money, but if you don’t mind finding a few duds along the way it’s still possible to pick up something nice without paying the excessive scene tax of an Etsy seller or an online store. The trouble is, in the many decades during which your purchase went from being pride and joy to forgotten in a drawer to lying on the shelf of a thrift store, its performance may have degraded a little. Does the shutter still operate as it should? How long is a split second anyway? You need a shutter speed tester, and luckily for us, [Stuart Brown] has one.

There are no sharks involved in this build, but it does rely on laser diodes as a light source. There are three of them as well as three sensors, packaged photodiodes with a Schmidt trigger. These feed an Arduino which is hooked up to a TFT display, and the software measures how long each diode receives the light. We’re told it can also measure the raise time on curtain shutters, another important metric.

There’s little in the way of usage examples, but we’re guessing it requires positioning the camera between lasers and photodiodes. We’re curious as to how such an instrument would perform on a camera with a fixed lens, or whether it’s only suitable for those with access to the shutter itself. If this subject interests you, it’s not the first shutter speed tester we’ve shown you.

Header image: Runner1616, CC BY-SA 4.0.

Probably The Cheapest Lens You Will Ever Use

Photographic enthusiasts will invariably amass an extensive collection of lenses, and in their communities there are near-mythical and sought-after lenses that change hands for incredible prices. It’s probably the oldest photographic adage though, that the best camera in the world is the one in your hand when the scene presents itself, and probably one of the simplest cameras in the world remains the disposable film camera. Their tiny plastic lenses are not in the same league as the pricey ones, but can they be used by a more serious photographer? [Volzo] set out to find out.

Disposable cameras aren’t the most environmentally friendly items, and he rightly points out that a cheap compact camera can deliver the same in a more sustainable package. There’s also the point to make that the flash capacitor if it has one can deliver a nasty shock, but once past that it’s easy to remove the lens itself.

A single element lens brings with it some significant distortion, and it’s a surprise to find that the focal plane of a disposable camera is curved to take account of that. His first 3D printed mount and adapter for a Sony mirrorless compact camera uses a small aperture to reduce the distortion effects from the edge of the lens but he’s not out of tricks yet. Using a pair of the lenses back-to-back he halves the focal length but further corrects the distortion and delivers a consequent wider angle. Take a look, in the video below.

The result is a usable lens for the toy-camera look on your digital camera, and since the files can all be found at the link above it’s something you can try too. If a disposable camera comes our way, we certainly will.

This isn’t the first disposable camera lens project we’ve brought you.

Continue reading “Probably The Cheapest Lens You Will Ever Use”

An All Sky Camera To Watch The Night Sky

If you have any astronomer friends you’ll soon discover that theirs is a world of specialist high-quality optical equipment far ahead of the everyday tinkerer, and for mere mortals the dream of those amazing deep space images remains out of reach. It’s not completely impossible for the night sky to deliver impressive imagery on a budget though, as [David Schneider] shows us with a Raspberry Pi powered whole sky camera.

The project was born of seeing a meteor and idly wondering whether meteorite landing sites could be triangulated from a network of cameras, something he quickly discovered had already been done with some success. Along the way though he found the allsky camera project, and decided to build his own. This took the form of a Raspberry Pi 3 and a Pi HQ camera with a wide-angle lens mounted pointing skywards under an acrylic dome. It’s not the Hubble Space Telescope by any means, but the results are nevertheless impressive particularly in a timelapse. We wish there were less light pollution where we live so we could try it for ourselves.

Long-term readers may remember that this isn’t the first Pi sky camera we’ve brought you, for example this one is from 2020.

Continue reading “An All Sky Camera To Watch The Night Sky”

This Camera Does Not Exist

Blender is a professional-grade 3D-rendering platform and much more, but it suffers sometimes from the just-too-perfect images that rendering produces. You can tell, somehow. So just how do you make a perfectly rendered scene look a little more realistic? If you’re [sirrandalot], you take a photograph. But not by taking a picture of your monitor with a camera. Instead, he’s simulating a colour film camera in extraordinary levels of detail within Blender itself.

The point of a rendering package is that it simulates light, so it shouldn’t be such a far-fetched idea that it could simulate the behaviour of light in a camera. Starting with a simple pinhole camera he moves on to a meniscus lens, and then creates a compound lens to correct for its imperfections. The development of the camera mirrors that of the progress of real cameras over the 20th century, simulating the film with its three colour-sensitive layers and even the antihalation layer, right down to their differing placements in the focal plane. It’s an absurd level of detail but it serves as both a quick run-down of how a film camera and its film work, and how Blender simulates the behaviour of light.

Finally we see the camera itself, modeled to look like a chunky medium format Instamatic, and some of its virtual photos. We can’t say all of them remove the feel of a rendered image, but they certainly do an extremely effective job of simulating a film photograph. We love this video, take a look at it below the break.

Continue reading “This Camera Does Not Exist”