Head-mounted Memory Catcher

A picture’s worth a thousand words so what is a hat that can take 360 degree pictures worth? Just make sure you put it on whenever leaving the house and capturing that next memorable moment will be just one click of a button away.

[Mikeasaurus] recently put together this… special… headgear. He used film-based disposable cameras and this choice presented a few interesting challenges. But the choice is not necessarily a bad one, as you can get six of these without really blowing your budget. He cut the top off of a plastic garbage can to serve as a headband on which to mount the hardware (zip-ties to the rescue). But things get hairy when it comes to triggering all of the shutters at once. These are spring-loaded shutter releases and you can’t just patch into them electrically like you could a digital camera. His solution is a group of six servo motors which do the button pushing for him.

A thirty-six exposure trial run turned out okay. Several times the shots didn’t come out, but at the end of his post he shares a few of the good ones that did. We’re going to stear clear of this one as we can’t abide manually winding all six cameras between each shot. But it does give us an idea for a single-camera hat that uses a 45-degree mirror which swivels. We’ll just put that one in the growing pile of ideas we need to make time for.

Simple Power Adapter Thumbs Its Nose At Proprietary Connectors

[Mike Worth] wanted to use his camera for some time-lapse photography. Since it’s used to take many pictures over a long period of time, he doesn’t want to deal with batteries running low. But there’s no standard power jack on the side; instead the official charger consists of an adapter that is inserted in place of the batteries. Rather than break the bank with the special cable, [Mike] made his own battery compartment A/C adapter.

You can see that it is made up of two parts. The first is a standard wall wart that outputs the correct voltage and has an acceptable current rating. The other part is the adapter cable that connects to the camera on one end, and has a barrel jack on the other. [Mike] rolled some paperboard around a pencil until it matched the diameter of a AA battery. Once of the cylinders has a thumb tack for the negative lead, and the other uses a screw and washer for the positive side. He soldered some wire to these and he’s in business.

He must be snapping photos frequently enough to avoid the auto-shutoff feature. That or he’s disabled it with the use of some custom firmware.

Tracking Small Changes In Video To See Someone’s Pulse

[Gil] sent in an awesome paper from this year’s SIGGRAPH. It’s a way to detect subtle changes in a video feed from [Hao-Yu Wu, et al.] at the MIT CS and AI lab and Quanta Research. To get a feel for what this paper is about, check out the video and come back when you pick your jaw off the floor.

The project works by detecting and amplifying very small changes in color occurring in several frames of video. From the demo, the researchers were able to detect someone’s pulse by noting the very minute changes in the color of their skin whenever their face is pumped full of blood.

A neat side effect of detecting small changes in color is the ability to also detect motion. In the video, there’s an example of detecting someone’s pulse by exaggerating the expanding artery in someone’s wrist, and the change in a shadow produced by the sun over the course of 15 seconds. This is Batman-level tech here, and we can’t wait to see an OpenCV library for this.

Even though the researchers have shown an extremely limited use case – just pulses and breathing – we’re seeing a whole lot of potential applications. We’d love to see an open source version of this tech turned into a lie detector for the upcoming US presidential debates, and the motion exaggeration is  perfect for showing why every sports referee is blind as a bat.

If you want to read the actual paper, here’s the PDF. As always, video after the break.

Continue reading “Tracking Small Changes In Video To See Someone’s Pulse”

Remote Shutter Module Uses LCD Screen For Setup

Here’s a full-featured remote shutter project which [Pixel-K] just finished. It seems that he’s interested in taking time-lapse images of the cosmos. Since astrophotography happens outside at night, this presented some special design considerations. He wanted something that he could configure in the dark without zapping his night-vision too much. He also wanted it to be easily configured with a pair of gloves on.

The project enclosure is a 4x AA battery box. He removed the partitions between each cell, leaving plenty of room for the guts. Inside you’ll find a lithium battery and a micro-USB recharger board. It powers the Arduino mini pro which drives the 1.8″ LCD screen and actuates the optoisolator which is responsible for triggering the camera. On the right you can see the clear knob of the clickable rotary encoder. All of the user settings are chosen and selected using just this one knob.

He’s already tried it out on a 6-hour shoot and had no battery life problems or other issues.

OpenCV Knows Where You’re Looking With Eye Tracking

[John] has been working on a video-based eye tracking solution using OpenCV, and we’re loving the progress. [John]’s pupil tracking software can tell anyone exactly where you’re looking and allows for free head movement.

The basic idea behind this build is simple; when looking straight ahead a pupil is perfectly circular. When an eye looks off to one side, a pupil looks more and more like an ellipse to a screen-mounted video camera. By measuring the dimensions of this ellipse, [John]’s software can make a very good guess where the eye is looking. If you want the extremely technical breakdown, here’s an ACM paper going over the technique.

Like the EyeWriter project this build was based on, [John]’s build uses IR LEDs around the edge of a monitor to increase the contrast between the pupil and the iris.

After the break are two videos showing the eyetracker in action. Watching [John]’s project at work is a little creepy, but the good news is a proper eye tracking setup doesn’t require the user to stare at their eye.

Continue reading “OpenCV Knows Where You’re Looking With Eye Tracking”

Making Instagram With An Old CRT

If you’re not familiar with Instagram, it’s a mobile app that takes pictures, applies low-fi ‘lomographic’ digital filters, and shares them on the Internet. For reasons we can’t comprehend, Instagram has been wildly successful as of late and was recently purchased by Facebook for a Billion dollars. [Martin Ström] figured he could do something much cooler than applying digital filters to a cell phone picture, so he built InstaCRT, an app that turns your pictures into grainy CRT images and satiates the geek and hipster in everyone.

From [Martin]’s project page, InstaCRT uses a small black and white CRT from an old camcorder and a Canon 7D to apply real-world analog filters to all the uploaded pictures. Once the pictures are uploaded to the MacBook Pro server, they’re displayed on the CRT and a picture is taken with the 7D. Once an Android/iOS device sends a picture to the server, it’s displayed on the CRT, the 7D snaps a picture, and the resulting ‘filtered’ picture is sent back to the mobile device.

While we’re sure a few Hackaday commentors are going to ask ‘why’, it’s still a very cool build that is the first real world digital camera filter we’ve seen. You can check out the video demo of InstaCRT after the break.

Continue reading “Making Instagram With An Old CRT”

A DSLR Shutter Cable For Android

Here’s a very easy way to trigger your DSLR camera using an Android device. It’s a similar method used with IR triggered cameras, in that all you need to do is assemble some simple hardware to plug into the headphone jack. The app that triggers the camera simply plays back a well crafted audio file to do so. The thing that this cable adds is the ability to use the focus feature, since the cable has two data lines.

The hardware is dead-simple. A pair of NPN transistors and a pair of resistors are hosted by this small chunk of strip board. The audio jack for Android uses left and right audio channels to drive the base of these transistors. On the camera side of things the transistors are pulling the focus, and shutter contacts to ground. Once this is covered with shrink tubing it’ll be pretty rugged, and ready to be thrown in your camera bag for use on short notice.

[Thanks Hannes]