Russian Drone Can Lift 142 Phantom 3 Drones

Russia has long been known for making large machines. They hold the current record for the largest helicopter ever made – the MiL V12. Same goes for the world’s largest airplane, the Antonov An-225. Largest submarine? Yep, they made that too – the Typhoon class. It would appear they’ve thrown their hat in the drone business as well.

While the SKYF drone is made by a private Russian company, it is one of the largest drones we’ve ever seen. Able to lift 400 pounds (a Phantom 3 weighs 2.8 pounds) and can fly for eight hours, the SKYF drone is a nice piece of aeronautical engineering. Quad-copter style drones provide lift by brute force, and are typically plagued with low lift capacities and short flight times. The SKYF triumphs over these limitations by using gasoline powered engines for lift and electric motors for navigation.

It’s still in the prototype stage and being advertised for use in natural disasters and the agriculture industry. Check out the video in the link above to see the SKYF in action.

What’s the largest drone you’ve seen?

Thanks to [Itay] for the tip!

Can Commodity RC Controllers Stay Relevant?

Visualize some radio controlled airplane fanatic of yesteryear, with the requisite giant controller hanging from a strap, neck craned to see the buzzing dot silhouetted against the sky. It’s kind of a stereotype, isn’t it? Those big transmitters were heavy, expensive, and hard to modify, but that was just part of the challenge. Additionally, the form factor has to a degree remained rigid: the box with gimbals — or for the 3-channel controller, the pistol-grip with the big pot that looks like a cheesy race car wheel.

With so much changing in RC capabilities, and the rise of custom electronics across so many different applications, can commodity RC controllers stay relevant? We’re facing an age where the people who invest most heavily in RC equipment are also the ones most likely to want, and know how to work with customization for their rapidly evolving gear. It only makes sense that someone will rise up to satisfy that need.

Continue reading “Can Commodity RC Controllers Stay Relevant?”

Rewire Your Own Brushless Motors

Hackaday likes the idea of fine-tuning existing hardware rather than buying new stuff. [fishpepper] wrote up a tutorial on rewinding brushless motors, using the Racerstar BR1103B as the example. The BR1103B comes in 8000 Kv and 10000 Kv sizes,  but [fishpepper] wanted to rewind the stock motor and make 6500 Kv and 4500 Kv varieties — or as close to it as he could get.

Kv is the ratio of the motor’s RPM to the voltage that’s required to get it there. This naturally depends on the magnet coils that it uses. The tutorial goes into theory with the difference between Wye-terminated and Star-terminated winding schemes, and how to compute the number of winds to achieve what voltage — for his project he ended up going with 12 turns, yielding 6700 Kv and 17 turns for 4700 Kv. His tutorial assumes the same gauge wire as the Racerstar.

Just as important as the theory, however, the tutorial also covers the physical process of opening up the motor and unwinding the copper wire, cleaning the glue off the stator, and then rewinding to get the required stats.

[fishpepper]’s handle has graced Hackaday before: he created what he calls the world’s lightest brushless FPV quadcopter. In addition to motors and drones, he also rocks a mean fidget spinner.

 

Drone License Plates: An Idea That Won’t Stave Off The Inevitable

As more and more drones hit the skies, we are beginning to encounter a modest number of problems that promise to balloon if ignored. 825,000 drones above a quarter-kilo in weight were sold in the U.S. in 2016. The question has become, how do we control all these drones?

Continue reading “Drone License Plates: An Idea That Won’t Stave Off The Inevitable”

Remote Controlled Jeep Destroyed For Your Amusement

Something you learn when you spend a good portion of your day trolling the Internet for creative and unique projects is that “Why?” is one question you should always be careful about asking. Just try to accept that, for this particular person, at this particular time, the project they poured heart and soul into just made sense. Trust us, it’s a lot easier that way.

This mantra is perhaps best exemplified (at least for today), by the incredible amount of work [Stephen Robinson] did to convert a real Jeep Cherokee into a remote control toy. But the crazy part it isn’t so much that he managed to convert a real Jeep to RC, it’s that the first thing he did with it was take it into a field and destroy it.

The stunt is part of a series of videos [Stephen] has on his YouTube channel called “How to learn anything”. His goal in this series is to learn two different skills from industry professionals and combine them in interesting and unconventional ways. The production quality on these videos is really top-notch, and definitely blew us away considering how few subscribers he currently has. If we had to guess, we’d say [Stephen] is about to get real big, real fast.

As it turns out, the process for turning a full size vehicle into a remote-controlled one isn’t actually that complex, relatively speaking. [Stephen] starts by removing the seat and replacing it with a metal frame that holds a motor salvaged from an electric wheelchair to turn the wheel, and a linear actuator to push the brake pedal. He lucked out a bit with the throttle, as this particular Jeep was old enough that there was still an easily accessible throttle cable they could yank with a standard hobby servo; rather than some electronic system they would have had to reverse engineer.

The rest of the hardware is pretty much your standard RC hobby gear, including a Spektrum DX6 transmitter and FPV equipment. Though due to continual problems with his FPV setup, [Stephen] eventually had to drive the Jeep up the ramp by line of sight, which took a few tries.

While this is still probably safer than riding around in a life-size quadcopter, we can’t say it’s the most sophisticated way a hacker has taken over a Jeep remotely.

Continue reading “Remote Controlled Jeep Destroyed For Your Amusement”

This Drone Can Fly, Swim, And Explode….. Wait, What?

You’ve probably heard of micro-drones, perhaps even nano-drones, but there research institutions that shrink these machines down to the size of insects. Leading from the [Wiss Institute For Biologically Inspired Engineering] at Harvard University, a team of researchers have developed a miniscule robot that — after a quick dip — literally explodes out of the water.

To assist with the take off, RoboBee has four buoyant outriggers to keep it near the water’s surface as it uses electrolysis to brew oxyhydrogen in its gas chamber. Once enough of the combustible gas has accumulated — pushing the robot’s wings out of the water in the process– a sparker ignites the fuel, thrusting it into the air. As yet, the drone has difficulty remaining in the air after this aquatic takeoff, but we’re excited to see that change soon.

Looking like a cross between a water strider and a bee, the team suggest this latest version of the RoboBee series  — a previous iteration used electrostatic adhesion to stick to walls — could be used for search and rescue, environmental monitoring, and biological studies. The capacity to transition from aerial surveyor, to underwater explorer and back again would be incredibly useful, but in such a small package, it is troublesome at best. Hence the explosions.

Continue reading “This Drone Can Fly, Swim, And Explode….. Wait, What?”

Lithium Ion Versus LiPoly In An Aeronautical Context

When it comes to lithium batteries, you basically have two types. LiPoly batteries usually come in pouches wrapped in heat shrink, whereas lithium ion cells are best represented by the ubiquitous cylindrical 18650 cells. Are there exceptions? Yes. Is that nomenclature technically correct? No, LiPoly cells are technically, ‘lithium ion polymer cells’, but we’ll just ignore the ‘ion’ in that name for now.

Lithium ion cells are found in millions of ground-based modes of transportation, and LiPoly cells are the standard for drones and RC aircraft. [Tom Stanton] wondered why that was, so he decided to test the energy density per mass of these battery chemistries, and what he found was very interesting.

The goal of [Tom]’s experiment was to test LiPoly against lithium ion batteries in the context of a remote-controlled aircraft. Since weight is what determines flight time, cutting even a few grams from an airframe can vastly extend the capabilities of an aircraft. The test articles for this experiment come in the form of a standard 1800 mAh LiPoly battery and four 18650 cells wired together as a 3000 mAh battery. Here’s where things get interesting: the LiPoly battery weighs 216 grams for an energy density of 0.14 Watt-hours per gram. The lithium ion battery weighs 202 grams for an energy density of 0.25 Watt-hours per gram. If you just look at the math, all drones are doing it wrong. 18650 cells appear to have a much higher energy density per mass than the usual LiPoly cells. How does that hold up in a real-world test, though?

Using his neat plane with 3D printed wing ribs as the testbed, [Tom] plugged in the batteries and flew around a field for the better part of an afternoon. The LiPo flew for 41.5 minutes, whereas the much more energy dense lithium ion battery flew for 36.5 minutes. What’s going on here?

While the lithium ion battery has a much higher capacity, the problem here is the internal resistance of each battery chemistry. The end voltage for the LiPo was a bit lower than the lithium ion battery, suggesting the 18650 cells can be run down a bit further than [Tom]’s test protocol allowed. After recharging each of these batteries and doing a bit of math, [Tom] found the lithium ion batteries can fly for about twice as long as their LiPo counterparts. That means an incredibly long test of flying a plane in a circle over a field; not fun, but we are looking forward to other people replicating this experiment.

Continue reading “Lithium Ion Versus LiPoly In An Aeronautical Context”