How Do We Deal With Microplastics In The Ocean?

Like the lead paint and asbestos of decades past, microplastics are the new awful contaminant that we really ought to do something about. They’re particularly abundant in the aquatic environment, and that’s not a good thing. While we’ve all seen heartbreaking photos of beaches strewn with water bottles and fishing nets, it’s the invisible threat that keeps environmentalists up at night. We’re talking about microplastics – those tiny fragments that are quietly infiltrating every corner of our oceans.

We’ve dumped billions of tons of plastic waste into our environment, and all that waste breaks down into increasingly smaller particles that never truly disappear. Now, scientists are turning to an unexpected solution to clean up this pollution with the aid of seashells and plants.

Continue reading “How Do We Deal With Microplastics In The Ocean?”

What Happens If You Die In Space?

There are no two ways about it—space will kill you if you give it half a chance. More than land, sea, or air, the space environment is entirely hostile to human existence. Precision-engineered craft are the bare minimum just to ensure human survival. Even still, between the vacuum, radiation, micrometeorites, and equipment failures, there are plenty of ways for things to go catastrophically wrong beyond Earth’s atmosphere.

Despite the hazards, most spacefaring humans have completed their missions without injury. However, as we look to return to the Moon, tread on Mars, and beyond, it’s increasingly likely that future astronauts could pass away during longer missions. When that inevitably happens, the question is simple—how do you deal with death in space?

Continue reading “What Happens If You Die In Space?”

A Closer Look At The Tanmatsu

A few weeks ago we brought you news of a new palmtop computer for hackers, powered by the new Espressif ESP32-P4 application processor. The Tanmatsu (Japanese for “Terminal”) is a compact handheld device with a QWERTY keyboard and an 800×480 DSI display, and while it currently exists at the final prototype stage there is a pre-order page upon which you can reserve an early production model for yourself. We’ve been lucky enough to be invited to give one a close-up inspection, so it was time to hot-foot it on the train to a Dutch hackerspace in order to bring you a preview.

A Little History, And First Impressions

The Tanmatsu, held in both hands.
Recesses in the case fit well against the hands.

Before looking at the device, it’s time for a little history. The Tanmatsu has its origin in badge.team, the Netherlands-based group that has produced so many European event badges over the years, and it was destined to eventually become the badge for the upcoming WHY2025 hacker camp. As sometimes happens in any community there has been a significant difference of opinion between the event orga and the badge.team folks that it’s inappropriate to go into here, so now it exists as a standalone project. It’s destined to be open-source in its entirety including hardware and software (and we will hold them to that, never fear), but because of the events surrounding its conception the full repositories will be not be made public until some time late in the summer.

Picking the Tanmatsu up and holding it, it’s a rectangular slab a bit larger and thicker than a CD case with that QWERTY keyboard and display on its front face, an array of ports including an SMA socket for a LoRA antenna on its sides, and an expansion connector on its rear. It has a sandwich construction, with a PCB front face, a 3D printed spacer, the PCB itself, and a 3D printed back cover all held together with a set of screws. The recesses on its bottom edge and the lower halves of the sides locate neatly with fingers and thumbs when it’s held in two hands for two-thumb typing. The keyboard is a silicone moulding as is common on this type of device, and while the keys are quite small it was not difficult to type on it. The display meanwhile feels of much higher quality than the SPI parts previously seen on badges. Continue reading “A Closer Look At The Tanmatsu”

USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin

The Universal Serial Bus. The one bus to rule them all.  It brought peace and stability to the world of computer peripherals. No more would Apple and PC users have to buy their own special keyboards, mice, and printers. No more would computers sprout different ports for different types of hardware. USB was fast enough and good enough for just about everything you’d ever want to plug in to a computer.

We mostly think of USB devices as being plug-and-play; that you can just hook them up and they’ll work as intended. Fiddle around around with some edge cases, though, and you might quickly learn that’s not the case. That’s just what I found when I started running complicated livestreams from a laptop…

Continue reading “USB Hub-A-Dub-Dub: Weird Edge Cases Are My Ruin”

Digital Paint Mixing Has Been Greatly Improved With 1930s Math

You might not have noticed if you’re not a digital artist, but most painting and image apps still get color mixing wrong. As we all learned in kindergarten, blue paint and yellow paint makes green paint. Try doing that in Photoshop, and you’ll get something altogether different—a vague, uninspiring brownish-grey. It’s the same story in just about every graphics package out there.

As it turns out, there’s a good reason the big art apps haven’t tackled this—because it’s really hard! However, a team of researchers at Czech Technical University has finally cracked this long-standing problem. The result of their hard work is Mixbox, a digital model for pigment-based color mixing. Once again, creative application of mathematics has netted aesthetically beautiful results!

Continue reading “Digital Paint Mixing Has Been Greatly Improved With 1930s Math”

Supercon 2024: Joshua Wise Hacks The Bambu X1 Carbon

Bambu Labs have been in the news lately. Not because of the machines themselves, but because they are proposing a firmware change that many in our community find restricts their freedom to use their own devices.

What can be done? [Joshua Wise] gave a standout talk on the Design Lab stage at the 2024 Hackaday Superconference where he told the tale of his custom firmware for the Bambu X1 Carbon. He wasn’t alone here; the X1 Plus tale involves a community of hackers working on opening up the printer, but it’s also a tale that hasn’t ended yet. Bambu is striking back. Continue reading “Supercon 2024: Joshua Wise Hacks The Bambu X1 Carbon”

Big Chemistry: Catalysts

I was fascinated by the idea of jet packs when I was a kid. They were sci-fi magic, and the idea that you could strap into an oversized backpack wrapped in tinfoil and fly around was very enticing. Better still was when I learned that these things weren’t powered by complicated rockets but by plain hydrogen peroxide, which violently decomposes into water and oxygen when it comes in contact with a metal like silver or platinum. Of course I ran right to the medicine cabinet to fetch a bottle of peroxide to drip on a spoon from my mother’s good silverware set. Needless to say, I was sorely disappointed by the results.

My little impromptu experiment went wrong in many ways, not least because the old bottle of peroxide I used probably had little of the reactive compound left in it. Given enough time, the decomposition of peroxide will happen all by itself. To be useful in a jet pack, this reaction has to proceed much, much faster, which was what the silver was for. The silver (or rather, a coating of samarium nitrate on the silver) acted as a catalyst that vastly increased the rate of peroxide decomposition, enough to produce jets of steam and oxygen with enough thrust to propel the wearer into the air. Using 90% pure peroxide would have helped too.

As it is for jet packs, so it is with industrial chemistry. Bulk chemical processes can rarely be left to their own devices, as some reactions proceed so slowly that they’d be commercially infeasible. Catalysts are the key to the chemistry we need to keep the world running, and reactors full of them are a major feature of many of the processes of Big Chemistry.

Continue reading “Big Chemistry: Catalysts”