The Long History Of Fast Reactors And The Promise Of A Closed Fuel Cycle

The discovery of nuclear fission in the 1930s brought with it first the threat of nuclear annihilation by nuclear weapons in the 1940s, followed by the promise of clean, plentiful power in the 1950s courtesy of nuclear power plants. These would replace other types of thermal plants with one that would produce no exhaust gases, no fly ash and require only occasional refueling using uranium and other fissile fuels that can be found practically everywhere.

The equipment with which nuclear fission was experimentally proven in 1938.

As nuclear reactors popped up ever faster during the 1950s and 1960s, the worry about running out of uranium fuel became ever more present, which led to increased R&D in so-called fast reactors, which in the fast-breeder reactor (FBR) configuration can use uranium fuel significantly more efficiently by using fast neutrons to change (‘breed’) 238U into 239Pu, which can then be mixed with uranium fuel to create (MOX) fuel for slow-neutron reactors, allowing not 1% but up to 60% of the energy in uranium to be used in a once-through cycle.

The boom in uranium supplies discovered during the 1970s mostly put a stop to these R&D efforts, with some nations like France still going through its Rapsodie, Phénix and SuperPhénix designs until recently finally canceling the Generation IV ASTRID demonstrator design after years of trying to get the project off the ground.

This is not the end of fast reactors, however. In this article we’ll look at how these marvels of engineering work and the various fast reactor types in use and under development by nations like Russia, China and India.

Continue reading “The Long History Of Fast Reactors And The Promise Of A Closed Fuel Cycle”

Better Battery Management Through Chemistry

The lead-acid rechargeable battery is a not-quite-modern marvel. Super reliable and easy to use, charging it is just a matter of applying a fixed voltage to it and waiting a while; eventually the battery is charged and stays topped off, and that’s it. Their ease is countered by their size, weight, energy density, and toxic materials.

The lithium battery is the new hotness, but their high energy density means a pretty small package that can get very angry and dangerous when mishandled. Academics have been searching for safer batteries, better charge management systems, and longer lasting battery formulations that can be recharged thousands of times, and a recent publication is generating a lot of excitement about it.

Consider the requirements for a battery cell in an electric car:

  • High energy density (Lots of power stored in a small size)
  • Quick charge ability
  • High discharge ability
  • MANY recharge cycles
  • Low self-discharge
  • Safe

Lithium ion batteries are the best option we have right now, but there are a variety of Li-ion chemistries, and depending on the expected use and balancing and charging, different chemistries can be optimized for different performance characteristics. There’s no perfect battery yet, and conflicting requirements mean that the battery market will likely always have some options.

Continue reading “Better Battery Management Through Chemistry”

More Supercon Talks Taking The Hardware World By Storm

You’re going to love the talks at the Hackaday Superconference this November. The ultimate hardware conference is all about hardware creation. The ten speakers below join the talks we announced last week and that’s still not even half of what you’ll see on the stages of Supercon. Add to that the superb workshops we announced early this week and you begin to ask yourself just how much awesome can really fit into a single weekend. Well, it’s three full days and we’d recommend arriving the day before for the unofficial festivities too!

Of course, you’ll need a ticket to ride. At the time of writing there were some available (we’ve left the teens and are headed for single digits), but no guarantee there will be any left when this article is published. We’ll be maintaining a waiting list though, so if you’re sitting on a ticket you just can’t use, please return it so someone else can take your spot.

Enough delay, let’s see what talks await us at 2019 Supercon!

The Talks (Part Two of Many)


  • Shelley Green

    Pressure connections: crimping isn’t as simple as you thought.

    Crimping is generally defined as the joining of two conductors by mechanical forces. At first, the process appears to be rather simple. However, deeper investigations reveal complex dynamics that operate at macroscopic, microscopic, and nanoscales. I will cover the basic theory for pressure connections, examine the role of mechanical properties for both conductivity and tensile strength, look at oxides and surface films, and consider the design challenges for tooling, testing, and validation of crimp quality.


  • Mike Harrison

    Everything I’ve Learnt About LEDs.

    LEDs are not all created alike. I will cover a wide range of practical techniques involved in using LEDs, in particular in the context of large-scale installations, hower much of it will be equally applicable to smaller projects. Topics include suitable LED types, drive circuitry, dimming techniques, gamma correction. There will be live demonstrations illustrating many of the areas covered.


  • Kerry Scharfglass

    Basic Device Security for Basic Needs

    It feels like every day we hear about an unbelievable new security vulnerability that allows an attacker to spy on your dog through a connected light bulb or program your toaster oven remotely. Some of these are quite elaborate, requiring researchers years to track down. But others are total no-brainers; “why didn’t the manufacturer just do X!”. In our IoT-ified world device security is more important than ever, but not every hardware product needs to be secured like an ATM inside a missile. I will discuss basic design practices and implementation tricks which are easy to incorporate into your product and provide a solid baseline of security against casual adversaries.


  • Sophy Wong

    Made With Machines: 3D Printing & Laser Cutting for Wearable Electronics

    Building tech for the human body is tricky! Whether it’s a fitness tracker or a costume, making hardware comfortable and durable enough to wear is a fascinating design challenge. I like to tackle this challenge with the help of machines! In this talk, I’ll share my recent projects that use 3D printing and laser cutting to create wearable tech with precision and high impact. I’ll talk about the design process and build techniques for using 3D printing and laser cutting to create custom parts that are comfortable and perfect for wearables.


  • Jen Costillo

    The Future is Us: Why the Open Source And Hobbyist Community Will Drive Hi-Tech Consumer Products

    Where did we the OSHW and hobbyist community come from and what have we accomplished? The truth is we are driving modern consumer electronics industry. From prototyping, to tools to media and training, we have changed it all. I’ll talk about the reasons why, our impact and our future, as well as how to avoid becoming what the older industry is: obsolete.


  • Timothy Ansell

    Xilinx Series 7 FPGAs Now Have a Fully Open Source Toolchain!

    You should be super excited about FPGAs and how they allow open source projects to do hardware development. In this talk I will cover a basic introduction into what an FPGA is and can do, what an FPGA toolchain is, and how much things sucked when the only option was to use proprietary toolchains. The SymbiFlow project changed this and I’ll discuss what is currently supported including a demo of Linux on a RISC-V core with a cheap Xilinx FPGA development board.


  • Chris Gammell

    Gaining RF Knowledge: An Analog Engineer Dives into RF Circuits

    Starting my engineering career working on low level analog measurement, anything above 1kHz kind of felt like “high frequency”. This is very obviously not the case. I’ll go over the journey of discovering and rediscovering higher frequency techniques and squaring them with the low level measurement basics that I learned at the beginning my career. This will include a discussion of Maxwell’s equations and some of the assumptions that we make when we’re working on different types of circuits. You will find this information useful in the context of RF calculations around cellular, WiFi, Bluetooth and other commonly available communication methods.


  • Shanni Prutchi and Jeff Woods

    Adventures in Building Secure Networks from Blockchain Transactions

    In our talk, we will show how we designed and built a message authentication system operating on ADANA (Automated Detection of Anomalous Network Activity) and Hyperledger (a “smart contract” form of Blockchain) all hosted on just two servers that were no longer being used by Rowan College. The system was built using Docker, syslog-ng, Hyperledger Fabric and Composer, and a beta version of Splunk. This system is accessible by nodes wired into the network which interact with the hyperledger through a web browser. We’ll present the infrastructure of the network, details of the hyperledger, an explanation of all the tools used by the system, a walkthrough of how the system works, reflections on the particular challenges of this project, and what we see in the future of this technology.


  • John McMaster

    Replicating a Secure Telephone Key

    The STU-III secure telephone was originally developed by the NSA for defense use in the 1980’s but also saw use in unclassified commercial products like the Motorola Sectel 9600\. However, they require difficult to find electromechanical keys. I will describe the process of creating a compatible key for the Sectel 9600 by reverse engineering the mechanical and electrical design and subsequently fabricating it. Along the way I’ll discuss low volume manufacturing issues and strategies to overcome.

 

We Want You!

Don’t miss out. One weekend as one of so many amazing people will inspire you and recharge your creative batteries for the coming year of hardware hacking. See you at Supercon!

Floating Power Plants; The Coastal City Solution Sure To Be Increasingly Popular

Building new things in an existing city is hard. Usually, new development means tearing down existing structures. Doing so for apartment complexes or new skyscrapers is one thing, but infrastructure is much more complicated, both from an engineering perspective and an economical one. Not only do people not want to foot the tax bill for things they may not see an immediate benefit from, but it can be difficult to find the space for bigger roads, more pipelines, or subway tunnels in a crowded urban area. It’s even harder for infrastructure that most consider an eyesore, like a power plant or electric substation. It’s no surprise then that some of the largest cities in the world have been making use of floating power plants rather than constructing them on dry land.

The latest city to entertain a bid for a new floating power plant (FPP) is New York, which is seeking to augment its current fleet of barge-based power stations already in operation. It already operates the largest FPP in the world at Gowanus in Brooklyn, which is able to output 640 MW of electricity. There’s also a 320 MW plant nearby as well, and the new plants would add eight 76 MW generators to New York City’s grid.

Let’s take a look at what goes into these barge-based generator designs.

Continue reading “Floating Power Plants; The Coastal City Solution Sure To Be Increasingly Popular”

When Does Moving To Resin 3D Printing Make Sense?

An Elegoo Mars DLP resin 3D printer, straight to my doorstep for a few hundred bucks. What a time to be alive.

Resin-based 3D printers using stereolithography (SLA) and especially digital light processing (DLP) are getting more common and much more affordable. Prosumer-level options like Formlabs and the Prusa SL1 exist, but more economical printers like the Elegoo Mars, Anycubic Photon, and more can be had for a few hundred bucks. Many printers and resin types can even be ordered directly from Amazon, right at this moment.

Resin prints can look fantastic, so when does it make sense to move to one of these cheap DLP printers? To know that, consider the following things:

  • The printing process and output of resin printers is not the same as for filament-based printers. Design considerations, pre-processing, and post-processing are very different.
  • Resin printing has a different workflow, with consumables and hidden costs beyond the price of resin refills.

Things may not be quite where fused deposition modeling (FDM) printers were just a few short years ago when we were extremely impressed with the quality of printer one could get for about $200, but it is undoubtedly far more accessible than ever before. Let’s look at how to inform a decision about whether to take the plunge. Continue reading “When Does Moving To Resin 3D Printing Make Sense?”

Fried Desk Lamp Reborn: How To Use ESP8266 To Build Connected Devices

Some hacks are born of genius or necessity, and others from our sheer ham-fisted incompetence. This is not a story about the first kind. But it did give me an excuse to show how easy it is to design WiFi-connected devices that work the way you want them to, rather than the way the manufacturer had in mind.

It started out as a sensible idea – consumer electronics in Vietnam have many different electric plug types for mains AC power: A, C, G, F, and I are fairly present, with A and C being most common. For a quick review of what all those look like, this website sums it up nicely. There are universal power adapters available of course, but they tend to fit my most common type (C) poorly, resulting in intermittent power loss whenever you sneeze. So I figured I should replace all the plugs on my devices to be A-type (common to those of you in North America), as it holds well in all the power bar types I have, mainly leftover server PDUs.

This was very straightforward until I got to my desk lamp. Being a fancy Xiaomi smart lamp, they had opted to hide a transformer in the plug with such small dimensions that I failed to notice it. So instead of receiving a balmy 12 volts DC, it received 220 volts AC. With a bright flash and bang, it illuminated my desk one final time.

Continue reading “Fried Desk Lamp Reborn: How To Use ESP8266 To Build Connected Devices”

Off-World Cement Tested For The First Time

If the current Administration of the United States has their way, humans will return to the surface of the Moon far sooner than many had expected. But even if NASA can’t meet the aggressive timeline they’ve been given by the White House, it seems inevitable that there will be fresh boot prints on the lunar surface within the coming decades. Between commercial operators and international competition, we’re seeing the dawn of a New Space Race, with the ultimate goal being the long-term habitation of our nearest celestial neighbor.

Schmitt's dusty suit while retrieving samples from the Moon
An Apollo astronaut covered in lunar dust

But even with modern technology, it won’t be easy, and it certainly won’t be cheap. While commercial companies such as SpaceX have significantly reduced the cost of delivering payloads to the Moon, we’ll still need every advantage to ensure the economical viability of a lunar outpost. One approach is in situ resource utilization, where instead of transporting everything from Earth, locally sourced materials are used wherever possible. This technique would not only be useful on the Moon, but many believe it will be absolutely necessary if we’re to have any chance of sending a human mission to Mars.

One of the most interesting applications of this concept is the creation of a building material from the lunar regolith. Roughly analogous to soil here on Earth, regolith is a powdery substance made up of grains of rock and micrometeoroid fragments, and contains silicon, calcium, and iron. Mixed with water, or in some proposals sulfur, it’s believed the resulting concrete-like material could be used in much the same way it is here on Earth. Building dwellings in-place with this “lunarcrete” would be faster, cheaper, and easier than building a comparable structure on Earth and transporting it to the lunar surface.

Now, thanks to recent research performed aboard the International Space Station, we have a much better idea of what to expect when those first batches of locally-sourced concrete are mixed up on the Moon or Mars. Of course, like most things related to spaceflight, the reality has proved to be a bit more complex than expected.

Continue reading “Off-World Cement Tested For The First Time”