Supercon 2024: A New World Of Full-Color PCBs

Printed circuit boards were once so simple. One or two layers of copper etched on a rectangular fiberglass substrate, with a few holes drilled in key locations so components could be soldered into place. They were functional objects, nothing more—built only for the sake of the circuit itself.

Fast forward to today, and so much has changed. Boards sprout so many layers, often more than 10, and all kinds of fancy geometric features for purposes both practical and pretty. But what catches they eye more than that, other than rich, saturated color? [Joseph Long] came to the 2024 Hackaday Supercon to educate us on the new world of full color PCBs.

Continue reading “Supercon 2024: A New World Of Full-Color PCBs”

Tech In Plain Sight: Hearing Aids

You might think you don’t need a hearing aid, and you might be right. But in general, hearing loss eventually comes to all of us. In fact, you progressively lose hearing every year, which is why kids can have high-pitched ringtones their parents can’t hear.

You’d think hearing aids would be pretty simple, right? After all, we know how to pick up sounds, amplify them, and play them back. But there’s a lot more to it. Hearing aids need to be small, comfortable, have great battery life, and cram a microphone and speaker into a small area. That also can lead to problems with feedback, which can be very uncomfortable for the user. In addition, they need to handle very soft and loud sounds and accommodate devices like telephones.

Although early hearing aids just made sound louder and, possibly, blocked unwanted sound, modern devices will try to increase volume only in certain bands where the user has hearing loss. They may also employ sophisticated methods to block or reduce noise. Continue reading “Tech In Plain Sight: Hearing Aids”

Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar

Suppose that you want to get rid of a whole lot of mosquitoes with a quadcopter drone by chopping them up in the rotor blades. If you had really good eyesight and pretty amazing piloting skills, you could maybe fly the drone yourself, but honestly this looks like it should be automated. [Alex Toussaint] took us on a tour of how far he has gotten toward that goal in his amazingly broad-ranging 2024 Superconference talk. (Embedded below.)

The end result is an amazing 380-element phased sonar array that allows him to detect the location of mosquitoes in mid-air, identifying them by their particular micro-doppler return signature. It’s an amazing gadget called LeSonar2, that he has open-sourced, and that doubtless has many other applications at the tweak of an algorithm.

Rolling back in time a little bit, the talk starts off with [Alex]’s thoughts about self-guiding drones in general. For obstacle avoidance, you might think of using a camera, but they can be heavy and require a lot of expensive computation. [Alex] favored ultrasonic range finding. But then an array of ultrasonic range finders could locate smaller objects and more precisely than the single ranger that you probably have in mind. This got [Alex] into beamforming and he built an early prototype, which we’ve actually covered in the past. If you’re into this sort of thing, the talk contains a very nice description of the necessary DSP.

[Alex]’s big breakthrough, though, came with shrinking down the ultrasonic receivers. The angular resolution that you can resolve with a beam-forming array is limited by the distance between the microphone elements, and traditional ultrasonic devices like we use in cars are kinda bulky. So here comes a hack: the TDK T3902 MEMS microphones work just fine up into the ultrasound range, even though they’re designed for human hearing. Combining 380 of these in a very tightly packed array, and pushing all of their parallel data into an FPGA for computation, lead to the LeSonar2. Bigger transducers put out ultrasound pulses, the FPGA does some very intense filtering and combining of the output of each microphone, and the resulting 3D range data is sent out over USB.

After a marvelous demo of the device, we get to the end-game application: finding and identifying mosquitoes in mid-air. If you don’t want to kill flies, wasps, bees, or other useful pollinators while eradicating the tiny little bloodsuckers that are the drone’s target, you need to be able to not only locate bugs, but discriminate mosquitoes from the others.

For this, he uses the micro-doppler signatures that the different wing beats of the various insects put out. Wasps have a very wide-band doppler echo – their relatively long and thin wings are moving slower at the roots than at the tips. Flies, on the other hand, have stubbier wings, and emit a tighter echo signal. The mosquito signal is even tighter.

If you told us that you could use sonar to detect mosquitoes at a distance of a few meters, much less locate them and differentiate them from their other insect brethren, we would have thought that it was impossible. But [Alex] and his team are building these devices, and you can even build one yourself if you want. So watch the talk, learn about phased arrays, and start daydreaming about what you would use something like this for.

Continue reading “Supercon 2024: Killing Mosquitoes With Freaking Drones, And Sonar”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Grasshopper Typewriter

Do you consider your keyboard to be a fragile thing? Meet the glass keyboard by [BranchNo9329], which even has a glass PCB. At least, I think the whole thing is glass.

The back side of an all-glass keyboard. Yeah.
Image via [BranchNo9329] via reddit
There are so frustratingly few details that this might as well have been a centerfold, but I thought you all should see it just the same. What we do have are several pictures and a couple of really short videos, so dive in.

I can tell you that [BranchNo2939] chose a glass substrate mainly due to curiosity about its durability compared with FR4. And that the copper circuitry was applied with physical vapor deposition (PVD) technology.

Apparently one of [BranchNo2939]’s friends is researching the bonding of copper on to glass panels, so they thought they’d give a keyboard a go. Right now the thing is incomplete — apparently there’s going to be RGB. Because of course there’s going to be RGB. Continue reading “Keebin’ With Kristina: The One With The Grasshopper Typewriter”

Hackaday Links Column Banner

Hackaday Links: March 23, 2025

What a long, strange trip it’s been for NASA astronauts Suni Williams and Bruce Wilmore, who finally completed their eight-day jaunt to space after 289 days. The duo returned to Earth from the ISS on Tuesday along with two other returning astronauts in a picture-perfect splashdown, complete with a dolphin-welcoming committee. For the benefit of those living under rocks these past nine months, Williams and Wilmore slipped the surly bonds way back in June on the first crewed test flight of the Boeing Starliner, bound for a short stay on the ISS before a planned return in the same spacecraft. Alas, all did not go to plan as their ride developed some mechanical difficulties on the way upstairs, and so rather than risk their lives on a return in a questionable capsule, NASA had them cool their heels for a couple of months while Starliner headed home without them.

There’s been a lot of talk about how Butch and Suni were “stranded,” but that doesn’t seem fair to us. Sure, their stay on the ISS was unplanned, or at least it wasn’t Plan A; we’re sure this is always a contingency NASA allows for when planning missions. Also unfortunate is the fact that they didn’t get paid overtime for the stay, not that you’d expect they would. But on the other hand, if you’re going to get stuck on a work trip, it might as well be at the world’s most exclusive and expensive resort.

Continue reading “Hackaday Links: March 23, 2025”

High Frequency Food: Better Cutting With Ultrasonics

You’re cutting yourself a single slice of cake. You grab a butter knife out of the drawer, hack off a moist wedge, and munch away to your mouth’s delight. The next day, you’re cutting forty slices of cake for the whole office. You grab a large chef’s knife, warm it with hot water, and cube out the sheet cake without causing too much trauma to the icing. Next week, you’re starting at your cousin’s bakery. You’re supposed to cut a few thousand slices of cake, week in, week out. You suspect your haggardly knifework won’t do.

In the home kitchen, any old knife will do the job when it comes to slicing cakes, pies, and pastries. When it comes to commercial kitchens, though, presentation is everything and perfection is the bare minimum. Thankfully, there’s a better grade of cutting tool out there—and it’s more high tech than you might think.

Continue reading “High Frequency Food: Better Cutting With Ultrasonics”