Hackaday Prize Semifinalist: Big Data And Big Agriculture

For their entry to the Hackaday Prize, the team behind SentriFarm is solving a big problem for farmers in Australia. Down there, farms are big, and each paddock must be checked daily. This means hours of driving every day. Surely a bunch of sensors and some radio links would help, right?

This is the idea behind SentriFarm: a ground station that reads air temperature, atmospheric pressure, wind speed and direction, rain, light, UV and smoke, and relays that back to a central node. Yes, it’s basically a wireless weather station, but the sheer distance these sensors must transmit adds some interesting complexity.

The SentriFarm team is hoping to get about 10km out of their radio system, and they’re using a long-range, low power radio module to do it. This data is received by the ubiquitous radio towers found on Australian farms and sent to a database on the farm’s network. This data can be combined with data from the local weather service to get an accurate picture of exactly what’s happening in each paddock.

You can check out the SentriFarm project video below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Big Data And Big Agriculture”

Turning Smog Into Gemstones And Pollution Awareness

Wait what? The Smog Free Project by [Daan Roosegaarde] is another one of those head scratchers where somehow art, engineering, and a designer collide — to produce what looks like an actual working concept…?

The oddly shaped white tower is essentially a massive air purifier. It’s in Rotterdam this week after over 3 years of research and development. It actually scrubs the air, removes contaminates, and then compresses those particles down into small cubes, or “gem stones”. Going full tilt, it will clean approximately 30,000 cubic meters of air per hour. Continue reading “Turning Smog Into Gemstones And Pollution Awareness”

Recycled Factory Recycles Soda Bottles

All over the world, mountains of polyethylene terephthalate (PET) plastics are available for recycling in the form of soda bottles. And wherever there is enough cheap raw material, a market is sure to emerge for it. One brilliant inventor in Brazil has decided to capitalize on this market by building a magnificent factory to turn PET bottles into threads, rope, and other products.

Not a word of English is spoken in the video, and our Portuguese stops at obrigado, but you don’t really need to understand what’s being said to know what’s going on. Built from what looks to be the running gear of several bicycles and motors from various cast-off appliances, our nameless genius’ machines slit the PET bottles into fine threads, winds the thread onto spools, and braids the threads into heavier cords. We love the whole home-brew vibe of the machines; especially clever is the hacked desk calculator wired to a microswitch to count revolutions, and the salvaged auto jack used to build a press for forming the broom heads. All in all it’s a pretty amazing little factory cranking out useful products from zero-cost raw material.

We’d love to have more context about what’s being said in the video, so we’ll put this one out there for our Portuguese-speaking readers. Maybe we can get a partial translation in the comments? If so, then obrigado.

[Thanks W4RIS]

And For My Next Trick, I’ll Be Pulling Carbon Nanofibers Out Of Thin Air!

Scientists at the George Washington University have managed to figure out a process in which they can literally grow carbon nanofibers out of thin air, using solar power.

Not only that, they do it using carbon dioxide — you know, that gas that contributes heavily to climate change? Using two electrodes, they pump power into a mixture of molten salt; lithium carbonate and lithium oxide. Then, carbon dioxide from the air reacts with the lithium oxide, producing carbon nanofibers — with more lithium carbonate and oxygen as byproducts.

The carbon nanofibers can then be used for a wide range of products or further processes. But beyond getting a useful material out of it, getting rid of carbon dioxide, if done on a large scale, could be beneficial for climate change. Unfortunately, they haven’t figured out how to do that just yet…

Continue reading “And For My Next Trick, I’ll Be Pulling Carbon Nanofibers Out Of Thin Air!”

Skysphere

Living In A Sphere In The Sky

Wow. Looking to live off the grid in style? [Jono Williams] just finished off his rather ambitious Skysphere project.

Using industrial materials (is that highway lamp post tower?), [Jono] designed and built his ultimate apartment tower out in the country. Kind of looks like a futuristic outlook or security post — something straight out of that [Tom Cruise] flick, Oblivion.

The project has been in the works for years, and [Jono] estimates its taken about 3000 hours so far — not to mention $50,000 USD in building materials. It’s solar powered, Android controlled, has a fingerprint scanner at the door, an integrated beer fridge in the couch, RGB LED lighting, WiFi, a stargazing platform, a custom queen size bed, his own AI voice, wireless sound, and automated heat management!  Continue reading “Living In A Sphere In The Sky”

Simple, Cheap Nitrate Tester Is Open Source

Too much of a good thing can be a bad thing, and nitrate pollution due to agricultural fertilizer runoff is a major problem for both lakes and coastal waters. Assessing nitrate levels commercially is an expensive process that uses proprietary instruments and toxic reagents such as cadmium. But [Joshua Pearce] has recently developed an open-source photometer for nitrate field measurement that uses an enzyme from spinach and costs a mere $65USD to build.

The device itself is incredibly simple – a 3D printed enclosure houses an LED light source and a light sensor. The sample to be tested is mixed with a commercially available reagent kit based on the enzyme nitrate reductase, resulting in a characteristic color change proportional to the amount of nitrate present. The instrument reads the amount of light absorbed by the sample, and communicates the results to an Android device over a Bluetooth link.

Open-source instruments like this can really open up educational opportunities for STEM groups to get out into the real world and start making measurements that can make a difference. Not only can this enable citizen scientists and activists, but it also opens the door for getting farmers involved in controlling nitrate pollution at its source – knowing when a field has been fertilized enough can save a farmer unnecessary expense and reduce nitrate runoff.

There are a lot of other ways to put an open-source instrument like this to use in biohacking – photometery is a very common measuring modality in the life sciences, after all. We’ve seen similar instruments before, like a DIY spectrophotometer, or this 2015 Hackaday Prize entry medical tricorder with a built-in spectrophotometer. Still, for simplicity of build and potential impact, it’s hard to beat this instrument.

Irrighino, An Arduino Yun Based Watering System

There are many different ways to keep your plants watered on a schedule. [Luca Dentella] just created a new one by building the irrighino watering system. He used standard off the shelf, hardware to keep it simple. Irrighino is a complete watering system based on the Arduino Yun, featuring a user friendly AJAX interface. This allows scheduling in a manner similar to creating appointments in Outlook. It’s also possible to manually control the various water solenoids. The code is fully customizable and open source, with code available from [Luca’s] github repository. The web interface is divided in to three tabs – “runtime” for manual control, “setup” to configure the scheduling, and “events” to view system logs.

The Arduino Yun activates solenoid valves via a relay shield. A switch panel has indicator Status LED’s and three position switches. These allow the outputs to be switched off or on manually, or controlled via the Yun when in auto mode. [Luca] describes how to read three states of the switch (On-Off-On) when connected to a single analog input of the Arduino. He’s also got another tutorial describing how to connect a USB WiFi adapter to the Yun. This is handy since the Yun is mounted inside an enclosure where the signal strength is very weak. While the Yun has on-board WiFi, there is no possibility to attach an external antenna directly to the test SMA socket.

One interesting part is the commercial rain sensor. It’s a switch surrounded by a spongy material. When this material absorbs rain water, it begins to expand and triggers the switch. The Arduino sees the sensor as a simple digital input.

Check a short demo of his system in the video after the break.

Continue reading “Irrighino, An Arduino Yun Based Watering System”