Running Minecraft On Two Routers

router

[CNLohr] is no stranger to running Minecraft on some weird hardware. Earlier, he built this Linux powered microscope slide… thing to toggle LEDs with redstone levers in Minecraft. Figuring if Minecraft could run on an AVR, he decided to try the same thing on a router, a TP-LINK TL-WR841N to be specific. Like the microscope slide running Linux, this proved to be an easy task. [CNLohr] had another router he could run Minecraft on, and this one could also punch wood. There really was only one thing for him to do.

Like the microscope slide and the wireless router, [CNLohr]’s CNC router is now running a Minecraft server. The phrase, “because it’s there” comes to mind. When connected to the CNC server, the player controls a snow golem (a snowman with a jack ‘o lantern head) with a carrot. Wherever the snow golem goes, the tool head follows, allowing him to carve objects in the world, and on a sheet of MDF secured in the CNC machine.

It’s certainly an odd build, but [CNLohr] was able to carve out a pixeley, blocky Hackaday logo with the snow golem controlled CNC machine. Code here, video below.

Continue reading “Running Minecraft On Two Routers”

The Automated Pickup Winding Machine

winderBack when electric guitars were a new thing, winding pickups was a very labor intensive and error-prone process. The number of windings could easily vary by a few hundred turns of wire, making the resulting pickup either anemic or much more powerful than the other pickups in the guitar. [Davide] is starting to wind his own pickups, and desiring a little more precision than simply guessing how many winds are on a coil he built an AVR coil winding machine.

The machine uses a DC gear motor running at 1200 RPM. A magnet is glued onto the motor shaft, and a hall effect sensor connected to an ATMega8 keeps track of how many windings are on the coil.

The interface is simple, using character LCD to display a wind counter, motor direction, and current motor speed. There are some useful features in this machine; slow start-up and automatic stop makes winding pickups much easier than the traditional home method of winding pickups with a sewing machine.

Continue reading “The Automated Pickup Winding Machine”

Candle Powered Fan Keeps You Cool Using A Thermoelectric Generator

This is a great example of using a thermoelectric generator for a project. [Joohansson] made both a functional, and aesthetically beautiful fan using components from a computer.

Thermoelectric generators (TEGs for high temperatures, and cheaper TECs for lower temperatures) are also called peltier elements, which look like small square pieces of ceramic with two wires sticking out of them. If you supply power to it, one side will become hot, and the other cold. The TECs [Joohansson] is using want a temperature difference of 68C between either sides. They are typically used for cooling electronics and even some of those cheap mini-fridges will make use of one with a giant heat sink on the hot side.

In addition, they can be used as an electric generator, thanks to the seebeck effect. If you can create a temperature differential between the two sides, you can generate electricity. Using a CPU heatsink, cooler, and fan, [Joohansson] was able to power a small DC fan using only a candle. It’s a brilliant demonstration of the seebeck effect.

Continue reading “Candle Powered Fan Keeps You Cool Using A Thermoelectric Generator”

An Experiment To Test Radioactive Decay Varying Over Time

tritium_decay_experiment_black_box_electronics_top_view_IMG_3873

Here’s a hypothesis for you: radioactive decay varies over time, possibly with a yearly cycle. [Panteltje] decided to test this hypothesis, and so far has two year’s worth of data to comb over.

Radioactive decay can be easily detected with a photomultiplier tube, but these tubes are sensitive to magnetic fields and cosmic rays that would easily fly through just about any shielding [Pantelje] could come up with. Instead, the radiation in this setup is detected with simple photo detectors, pressed right up against a tritium-filled glass ampoule, a somewhat common lighting solution for fishing lures, watch faces, and compasses.

The experimental setup records the photo detectors, a temperature sensor, and a voltage reference, recording all the data to an EEPROM once an hour. All the important electronics are stuffed into a heatsinked, insulated, light-proof box, while the control electronics reside on a larger board with battery backup, alarm, indicator LEDs, and an RS232 connection.

After one year, [Pantelje] recorded the data and reset the experiment for another year. There are now two years worth of data available, ready for anyone to analyze. Of course, evidence that radioactive decay changes over the course of a few years would turn just about every scientific discipline on its head, so at the very least [Panteltje] has a great record of the output of tritium lights against the expected half-life.

A Ring Of Colored Pencils

Colored Pencil Ring

[Peter] proved he has equal parts prowess, patience, and perseverance with this colored pencil ring (imgur link). The ring is made from a cross-section of several colored pencils. The idea seems simple. The build process IS simple. As always though, the devil is in the details.

[Peter] started with a cheap pack of colored pencils. They have to be hexagonal pencils, as round ones won’t work well for this build. [Peter] used two nails to align the  pencils, and medium thickness Cyanoacrylate glue to bond them together. Cyanoacrylate (aka super glue) is a very strong but inflexible bond. We’re curious if a different adhesive might have worked better for this task.

Once the block of glued pencils was dry, [Peter] drilled a hole approximately his ring size. He used a band saw to cut a rough ring blank around the hole, then headed to the wood lathe. He mounted the ring with a jam chuck, which is a piece of wood turned to an interference fit with the workpiece. The problem was that the jam chuck cracked the ring as it was being installed. [Peter] was able to glue the ring back together, and turn it down on his lathe.

Click past the break for more on [Peter’s] ring.

Continue reading “A Ring Of Colored Pencils”

carbon nanotube being turned into aerogel sheet

Artificial Muscles Use Carbon Nanotube Sheets

Light as air, stronger than steel and more flexible than rubber. Sound like something from the next installment of the Iron Man series? [Tony Stark] would certainly take notice of this fascinating technology. Fortunately for us, it does not come from the studios of Hollywood, but instead the halls of the NanoTech Institute at the University of Texas.

Professor [Ray Baughman] and his team of scientists at the NanoTech Institute have developed a type of artificial muscle through a process of making aerogel sheets by growing carbon nanotubes in a forest like structure. Think of a vertical bamboo forest, with each bamboo stem representing a single carbon nanotube. Now imagine that the individual bamboo stems were connected together by much smaller horizontal threads. So that if you dislodge the bamboo and began to pull, the threads would pull the others, and you would get this sheet-like structure.

These aerogel sheets of carbon nantubes have some truly science fiction like properties. They can operate from 1,600 degrees centigrade to near absolute zero. If you inject a charge, each nanotube will be repulsed from one another, expanding some 220% of the sheet’s original size. Your muscles do this at roughly 20 – 40%. Stick around after the break for a video demonstration of these carbon nanotube aerogel sheets being made and demonstrated.

Thanks to [Steven] for the tip!

Continue reading “Artificial Muscles Use Carbon Nanotube Sheets”

Electronic Puzzle Box Uses Only Discrete Components

Puzzle box

Do you need an idea for a fun do it yourself gift for a friend or significant other? Look no further, [conductance] has you covered. He put together an awesome electronic puzzle box using all analog electronics. The puzzle case is shaped like an over sized die and is made out of wood. It also requires a small jumper cable and an external magnet to complete the puzzle.

This is a six-sided die, where each side has something different to offer. The “five” side of the die shows the progress you’ve made in completing the puzzle. Each of the five dots contains a green LED that will light up when the corresponding puzzle has been successfully completed.

The “one” side is completed by placing the included magnet over the dot. The magnet activates a reed switch which lights up the first LED. The “two” side contains a tilt switch. In order to solve this piece of the puzzle you must ensure the two side is facing up, as if you rolled a two. The “three” side contains three key switches. Each switch must be turned to a particular orientation. Once all three keys are configured properly, a third LED lights up.

The “four” side contains four sockets that fit the included jumper cable. This puzzle is solved by jumping the two correct sockets together. Finally, the number “six” side just has six momentary push buttons. All six buttons must be pressed simultaneously in order to light up the final LED. The tricky part is pressing all six buttons while simultaneously “rolling” a two in order to ensure the tilt switch is also activated.

Once all five LED’s are lit up, a relay is triggered which then activates a solenoid. The solenoid unlocks the door and reveals the prize. It’s always great to see electronics circuits like this that use all discrete components. This could have been accomplished any number of ways, but there’s something satisfying about a simple circuit that’s just right for the job. Be sure to check out [conductance’s] schematic if you want to see how this puzzle works.

[via Reddit]