Behold The Mighty Floppotron 3.0

If anyone has been struggling to get hold of a 3.5″ floppy drive lately, we think we’ve got a clue as to why — behold, the mighty floppotron 3.0 by [Paweł Zadrożniak.] With an utterly bonkers 512 floppy drives, four flatbed scanners and sixteen hard disks of various sizes, the floppotron 3.0 MIDI synthesiser is possibly the biggest such retro hardware synthesiser so far. Since every part of the system is motor-based, nobody is going to be surprised that to power the show is quite an undertaking, with nearly twenty switched-mode PSU modules needed to keep up with the demand, averaging 300W but rated at 1.2kW peak!

A full custom MIDI-to-RS485 gateway based around the nRF52xx series MCU deals with the communication to the collection of instrument controllers. These controllers are generic enough to take RS485 input and control a dedicated driver for either an array of floppy drives (up to 192), an array of hard drives or the handful of scanners. The way the floppy drives are grouped is quite neat. Rather than using each drive to generate a specific tone, the software uses the whole column for each note. By varying the number of drives moving simultaneously over time, the sound volume varies, simulating the note envelope and giving a richer sound. Multiple columns driving in parallel give the system a 16-note polyphony. The floppies cover the low notes, with the four flatbed scanners covering the higher notes. MIDI drum sounds are mapped to the hard disks, operating in a, well, percussive manner, with different case shapes giving unique sounds. Even the firmware can be updated over MIDI! So, checkout the demo video after the break for a sweet rendition of the very familiar “Entry of the gladiators” by Czech composer Julius Fučík.

If you think this looks familiar, you’re not mistaken, we’ve covered an earlier floppotron before, but we reckon nobody has attempted to do it with ye olde eight-inch drives yet!

Continue reading “Behold The Mighty Floppotron 3.0”

Here’s What It Takes To Fill A Piano With Water

Filling a piano with water probably sounds frivolous and asinine to many. However, it also sparks a certain curiosity as to what it would be like. Thankfully, [Mattias] put in the hours of work to find out so we don’t have to!

It doesn’t make a great pool, though.

A first attempt with an upright piano failed quickly. After just four minutes submerged in water, the wooden hammers would seize up as they swelled with moisture.

A grand piano was sourced for a second attempt. The strings were first detensioned to make things easier to work with, and the internal frame pried out from the surrounding piano body. To stop the water pouring out past the keys and strings, a simple solution was implemented: tilting the piano up so the water remained in the body below. A judicious application of various sealing agents was then used to seal the frame. Amazingly, the best information on sealing a piano came from enthusiasts building aquariums out of plywood boxes. Go figure.

The water has a muting effect on the piano’s sound as you might expect. The sound is particularly compelling when heard via underwater mics placed in the water-filled cavity. It almost sounds like a plucked instrument, and gives everything a strangely maritime feel. The sound waves can be seen on the surface of the water, too.

The experiment came to a tragic end when the piano was overfilled, dumping water over the keys and hammers. This caused every key to jam, killing the piano for good.

It’s a fun build, and a very silly one, if you can stand to watch a piano treated in this way. [Mattias] has form in the area of oddball instrument hacks, too, as we’ve previously featured his helium guitar. Video after the break.

Continue reading “Here’s What It Takes To Fill A Piano With Water”

Live Floppy Music Adds Elegance To Any Event

It wasn’t long after early humans started banging rocks together that somebody in the tribe thought they could improve on things a bit by doing it with a little rhythm. As such the first musician was born, and since it would be a couple million years before humanity figured out how to record sound, musical performances had to be experienced live throughout most of history. On the cosmic scale of things, Spotify only shows up about a zeptosecond before the big bash at midnight.

So its only fitting that [Linus Åkesson] has perfected the musical floppy drive to the point that it can now be played live. We understand the irony of this being demonstrated via the video below the break, but we think it still gets the point across — rather than having to get a whole array of carefully-scripted drives going to perform something that even comes close to a musical number, he’s able to produce tones by manipulating a single drive in real-time.

In his write-up, [Linus] not only goes over the general nuts and bolts of making music with floppy drives, but specifically explains how this Commodore 1541-II drive has been modified for its new life as a digital virtuoso. From his experiments to determine which drive moves corresponded to the most pleasing sounds, to the addition of a small microphone and a piezo sensor paired with an LMC662-based amplifier to provide a high-fidelity capture of the drive’s sounds and vibrations, there’s a lot of valuable info here for anyone else looking to make some sweet tunes with their old gear.

We’ve seen something of a resurgence of the floppy drive this year, with folks like Adafruit digging into the classic storage medium, and an experimental project to allow the Arduino IDE to create bootable x86 floppies. You won’t hear any complaints from us — while they might not offer much capacity compared to more modern tech, there’s something about a stack of multi-colored disks with hastily applied labels that warms our cold robotic hearts.

Continue reading “Live Floppy Music Adds Elegance To Any Event”

A man playing a pipe organ through a MIDI keyboard

How To Move A Full-Sized Church Organ From A House To A Museum

As electronics hobbyists we are grateful to our spouses and flatmates who gracefully tolerate all of our weird equipment and chaotic projects in their homes. But it takes a different level of dedication to share one’s home with a pipe organ enthusiast: back in the 1970s, one organist in Bristol went to the effort of installing a full-sized church organ into their house, effectively turning the modest dwelling into one giant musical instrument. Recently however, the house passed on to new owners who, understandably anxious to reclaim some space, listed the whole system on eBay.

A pipe organ installed into an attic
No cash in this attic; just lots of zinc pipes and pneumatic tubing.

Thankfully, the auction was won not by some scrap metal dealer but by [Look Mum No Computer], our favourite expert on odd musical instruments. He drove out all the way from Kent to help disassemble the organ and stuff the dozens of pipes, miles of cable and numerous valves, tubes, latches and switches into his van. Once back home, he faced the daunting task of reassembling the whole lot into something capable of playing music, which he’s currently documenting in a video series.

The organ’s new home is This Museum Is (Not) Obsolete, where it has its own room decorated in a style similar to the house it spent much of its life in. The first step to getting it working was to fire up the blower, which is effectively a powerful electric air pump together with a pressure-regulating mechanism. Once this was working, one row of pipes was added to test the actuation system. This consists of a set of solenoids that simply open or close the air supply to each pipe. [LMNC] still had an Arduino-based organ driver system from an earlier project, which allowed him to connect a MIDI keyboard to the partially-complete instrument and play a few notes on it.

There’s still a lot to be done, but we’re definitely impressed by what [LMNC] has achieved so far and can’t wait to see the organ restored to its former glory. We already knew that you could control pipe organs through MIDI, and we’ve seen much smaller organs built from scratch. Thanks for the tip, [hackbyte]! Continue reading “How To Move A Full-Sized Church Organ From A House To A Museum”

Relax And Enjoy This Simple Drone Synthesizer

You’d think that a synthesizer that makes as much noise and sports as many knobs as this one would have more than a dozen transistors on board. Surely the circuit behind the panel is complex, and there must be at least a couple of 555 timers back there, right?

But no, the “Box of Beezz” that [lonesoulsurfer] came up with is remarkably simple. It takes inspiration from a [Look Mum No Computer] circuit called the “Circle Drone of Doom,” which used six switchable relaxation oscillators to make some pretty cool sounds. The Box of Beezz steps that up a bit, with four oscillators in three switchable banks in the final version. Each oscillator has but one transistor with a floating base connection and a simple RC network on the collector. The sawtooth outputs of these relaxation oscillators can be adjusted and summed together, resulting in some surprisingly complex sounds. Check out the video below for a bit of the synth’s repertoire — we’d swear that there are points where we can hear elements of the THX Deep Note in there.

We poked around a bit to understand these oscillators, and it looks like these qualify as avalanche relaxation oscillators. [lonesolesurfer]’s notes indicate that SS9018 transistors should be used, but in the photos they appear to all be 2N4401s. We’re not sure how long the transistors will last operating in the avalanche mode, but if they quit, maybe some neon tubes would work instead.

Continue reading “Relax And Enjoy This Simple Drone Synthesizer”

Upcycled Practice Amp Build Goes To Eleven

What do you call someone who gives the toddler in your life a musical instrument as a gift? In most cases, “mortal enemy” is the correct answer, but not everyone feels quite so curmudgeonly, and might even attempt to turn up the volume a bit. Such is the case with this wonderfully detailed practice amp for the grandkids’ electric ukelele.

The aptly named [packrat] [Professor Mayhem] really made this build a tour de force of scrap bin sourcing. The amp is built around a module salvaged from an old TV, a stereo Class-D amp that was modified to provide 30 watts output and a volume control. The driver came from a flood-damaged speaker unit, and the power supply from a gutted wall wart. The case was built with scrap plywood and covered with pebble-grain fabric to give it that pro audio look, while the chassis for the electronics was bent from a piece of sheet steel.

But it’s the tiny details that really sell this project. Everything from the pilot light to the pointer knob screams 1970s, as do the painstaking front panel lettering and vinyl “Monkeydyne” logo. [Professor Mayhem] even went the extra mile to create an etched-brass serial number plate, a mock specs and safety label, and even a QA inspection tag that was (sort of) stapled inside the cabinet.

We tip our hats to [Professor Mayhem] for this four-month labor of love and obvious nostalgia trip, which the kids are sure to love. [Professor Mayhem] does admit that some will argue with his decision to use a Class D amp and a switch-mode power supply, but let’s be real — for the application, it’s probably more than sufficient.

Thanks for the tip, [packrat].

Sound Generation Board Makes The Tunes

[Mcjack123] has been getting into chiptunes lately and realized that his original interest started in 2018 when he used an Arduino to turn a TI-84 calculator into a sound machine. His latest iteration is a custom-designed soundboard and he takes us through the design and construction of it in a recent post.

The work models classic sound generators like the 2A03 or the Commodore 64 SID. You have a bunch of simple waveform generators along with filters and modulators to make various effects. These boards eventually gave way to FM synthesis devices like the Yamaha OPL2 and OPL3 chips. All of these cards accepted commands and generated audio on their own. More modern boards are more likely to simply convert digital data from the computer into audio.

Continue reading “Sound Generation Board Makes The Tunes”