Try It Out

It’s like Star Wars versus Star Trek at a SciFi convention, or asking creamy or chunky at the National Peanut Butter Appreciation Festival. (OK, we made that one up.) When Jenny reviewed the 1.0 version of LibrePCB, it opened the floodgates. Only on Hackaday!

Of course it makes sense that in a community of hardware hackers, folks who are not unfamiliar with the fine art and engineering of designing their own PCBs, have their favorite tools. Let’s face it, all PCB design software is idiosyncratic, and takes some learning. But the more fluent you are with your tool of choice, the more effort you have invested in mastering it, leading to something like the sunk-cost phenomenon: because you’ve put so much into it, you can’t think of leaving it.

The beauty of open-source software tools is that there’s almost nothing, aside from your own psychology, stopping you from picking up another PCB program, kicking the proverbial tires with a simple design, and seeing how it works for you. That’s what Jenny did here, and what she’s encouraged me to do. Whether it’s beginner-friendly Fritzing (also recently in version 1.0), upstarts LibrePCB or Horizon EDA, heavyweight champion KiCAD, or the loose-knit conglomeration of tools in coralEDA, you have enough choices that something is going to fit your PCB hand like a glove.

I certainly wouldn’t risk a swap up to a new tool on something super complicated, or something with a tight deadline, but why not start up a fun project to test it out? Maybe follow Tom Nardi’s lead and make a Simple Add-on, for a badge or just as a blinky to put on your desk? Don’t be afraid to try something new!

Hackaday Superconference 2023: First Round Of Speakers Announced!

Hackaday Supercon 2023 is almost upon us, and looking over the roster of fantastic talks gets us in the mood already.  We hope that it has the same effect on you too.

Supercon is the Ultimate Hardware Conference and you need to be there! We’ll announce the rest of the speakers, the workshops, and give you a peek at the badge over the next couple weeks. Supercon will sell out so get your tickets now before it’s too late. And stay tuned for the next round of reveals on Tuesday! Continue reading “Hackaday Superconference 2023: First Round Of Speakers Announced!”

Passive Desalination Discovers How To Avoid Salt-Clogging

Saltwater is plentiful, but no good for drinking. Desalinization is the obvious solution, but a big problem isn’t taking the salt out, it’s where all that leftover salt goes. Excess salt accumulates, crystallizes, collects, and clogs a system. Dealing with this means maintenance, which means higher costs, which ultimately limits scalability.

The good news is that engineers at MIT and in China have succeeded in creating a desalination system that avoids this problem by intrinsically flushing accumulated salt as it is created, keeping the system clean. And what’s more, the whole thing is both scalable and entirely passive. The required energy all comes from gravity and the sun’s heat.

To do this, the device is constructed in such a way that it mimics the thermohaline circulation of the ocean on a small scale. This is a process in which temperature and density differentials drive a constant circulation and exchange. In the team’s system, this ultimately flushes concentrations of salt out of the system before it has a chance to collect.

The entirely passive nature of the device, its scalability, and the fact that it could desalinate water without accumulating salt for years means an extremely low cost to operate. The operating principle makes sense, but of course, it is careful engineering that shows it is actually possible. We have seen projects leveraging the passive heating and circulation of water before, but this is a whole new angle on letting the sun do the work.

The Magic Of A Diode Sampler To Increase Oscilloscope Bandwidth

Making an oscilloscope is relatively easy, while making a very fast oscilloscope is hard. There’s a trick that converts a mundane instrument into a very fast one, it’s been around since the 1950s, and [CuriousMarc] has a video explaining it with an instrument from the 1960s. The diode sampler is the electronic equivalent of a stroboscope, capturing parts of multiple cycle of a waveform to give a much-slowed-down representation of it on the screen. How it works is both extremely simple, and also exceptionally clever as some genius-level high-speed tricks are used to push it to the limit. We’ve put the video below the break.

[Marc] has a Keysight 100 MHz ‘scope and the sampler allows him to use it to show 4 GHz. Inside the instrument is a pair of sample-and-hold circuits using fast diodes as RF switches, triggered by very low-rise-time short pulses. Clever tricks abound, such as using the diode pair to cancel out pulse leakage finding its way back to the source. To complete this black magic, an RF-tuned stub is utilized to help filter the pulses and further remove slower components.

It’s slightly amusing to note that the Keysight 100 MHz ‘scope is now “slow” while the early sampling ‘scopes had their “fast” capabilities in that range. The same technique is still used today, in fact, you probably have one on your bench.

The sampler he’s showing us is an accessory for another instrument we’ve previously shown you his work with.

Continue reading “The Magic Of A Diode Sampler To Increase Oscilloscope Bandwidth”

This Week In Security: Magic Packets, GPU.zip, And Enter The Sandman

Leading out the news this week is a report of “BlackTech”, an Advanced Persistent Threat (APT) group that appears to be based out of China, that has been installing malicious firmware on routers around the world. This firmware has been found primarily on Cisco devices, and Cisco has released a statement clarifying their complete innocence and lack of liability in the matter.

It seems that this attack only works on older Cisco routers, and the pattern is to log in with stolen or guessed credentials, revert the firmware to a yet older version, and then replace it with a malicious boot image. But the real fun here is the “magic packets”, a TCP or UDP packet filled with random data that triggers an action, like enabling that SSH backdoor service. That idea sounds remarkable similar to Fwknop, a project I worked on many years ago. It would be sort of surreal to find some of my code show up in an APT.

Don’t Look Now, But Is Your GPU Leaking Pixels

There’s a bit debate on who’s fault this one is, as well as how practical of an attack it is, but the idea is certainly interesting. Compression has some interesting system side effects, and it’s possible for a program with access to some system analytics to work out the state of that compression. The first quirk being leveraged here is that GPU accelerated applications like a web browser use compression to stream the screen view from the CPU to the GPU. But normally, that’s way too many pixels and colors to try to sort out just by watching the CPU and ram power usage.

And that brings us to the second quirk, that in Chrome, one web page can load a second in an iframe, and then render CSS filters on top of the iframe. This filter ability is then used to convert the page to black and white tiles, and then transform the white tiles into a hard-to-compress pattern, while leaving the black ones alone. With that in place, it’s possible for the outer web page to slowly recreate the graphical view of the iframe, leaking information that is displayed on the page.

And this explains why this isn’t the most practical of attacks, as it not only requires opening a malicious page to host the attack, it also makes some very obvious graphical changes to the screen. Not to mention taking at least 30 minutes of data leaking to recreate a username displayed on the Wikipedia page. What it lacks in practicality, this approach makes up for in cleverness and creativity, though. The attack goes by the GPU.zip moniker, and the full PDF is available. Continue reading “This Week In Security: Magic Packets, GPU.zip, And Enter The Sandman”

A Raspberry Pi 5 Is Better Than Two Pi 4s

What’s as fast as two Raspberry Pi 4s? The brand-new Raspberry Pi 5, that’s what. And for only a $5 upcharge (with an asterisk), it’s going to the new go-to board from the British House of Fruity Single-Board Computers. But aside from the brute speed, it also has a number of cool features that will make using the board easier for a number of projects, and it’s going to be on sale in October. Raspberry Pi sent us one for review, and if you were just about to pick up a Pi 4 for a project that needs the speed, we’d say that you might wait a couple weeks until the Raspberry Pi 5 goes on sale.

Twice as Nice

On essentially every benchmark, the Raspberry Pi 5 comes in two to three times faster than the Pi 4. This is thanks to the new Broadcom BCM2712 system-on-chip (SOC) that runs four ARM A76s at 2.4 GHz instead of the Pi 4’s ARM A72s at 1.8 GHz. This gives the CPUs a roughly 2x – 3x advantage over the Pi 4. (Although the Pi 4 was eminently overclockable in the CM4 package.)

The DRAM runs at double the clock speed. The video core is more efficient and pushes pixels about twice as fast. The new WiFi controller in the SOC allows about twice as much throughput to the same radio. Even the SD card interface is capable of running twice as fast, speeding up boot times to easily under 10 sec – maybe closer to 8 sec, but who’s counting?

Heck, while we’re on factors of two, there are now two MIPI camera/display lines, so you can do stereo imaging straight off the board, or run a camera and external display simultaneously. And it’s capable of driving two 4k HDMI displays at 60 Hz.

There are only two exceptions to the overall factor-of-two improvements. First, the Gigabyte Ethernet remains Gigabyte Ethernet, so that’s a one-ex. (We’re not sure who is running up against that constraint, but if it’s you, you’ll want an external network adapter.) But second, the new Broadcom SOC finally supports the ARM cryptography extensions, which make it 45x faster at AES, for instance. With TLS almost everywhere, this keeps crypto performance from becoming the bottleneck. Nice.

All in all, most everything performance-related has been doubled or halved appropriately, and completely in line with the only formal benchmarks we’ve seen so far, it feels about twice as fast all around in our informal tests. Compared with a Pi 400 that I use frequently in the basement workshop, the Pi 5 is a lot snappier.

Continue reading “A Raspberry Pi 5 Is Better Than Two Pi 4s”

The Robot That Lends The Deaf-Blind Community A Hand

The loss of one’s sense of hearing or vision is likely to be devastating in the way that it impacts daily life. Fortunately many workarounds exist using one’s remaining senses — such as sign language — but what if not only your sense of hearing is gone, but you are also blind? Fortunately here, too, a workaround exists in the form of tactile signing, which is akin to visual sign language, except that it uses one’s sense of touch. This generally requires someone who knows tactile sign language to translate from spoken or written forms to tactile signaling. Yet what if you’re deaf-blind and without human assistance? This is where a new robotic system could conceivably fill in.

The Tatum T1 in use, with a more human-like skin covering the robot. (Credit: Tatum Robotics)
The Tatum T1 in use, with a more human-like skin covering the robot. (Credit: Tatum Robotics)

Developed by Tatum Robotics, the Tatum T1 is a a robotic hand and associated software that’s intended to provide this translation function, by taking in natural language information, whether spoken, written or in some digital format, and using a number of translation steps to create tactile sign language as output, whether it’s the ASL format, the BANZSL alphabet or another. These tactile signs are then expressed using the robotic hand, and a connected arm as needed, ideally using ASL gloss to convey as much information as quickly as possible, not unlike with visual ASL.

This also answers the question of why one would not just use a simple braille cell on a hand, as the signing speed is essential to keep up with real-time communications, unlike when, say, reading a book or email. A robotic companion like this could provide deaf-blind individuals with a critical bridge to the world around them. Currently the Tatum T1 is still in the testing phase, but hopefully before long it may be another tool for the tens of thousands of deaf-blind people in the US today.