MakerBot And Ultimaker To Merge, Focus On Industry

Nine years ago, MakerBot was acquired by Stratasys in a deal worth slightly north of $600 million. At the time it was assumed that MakerBot’s line of relatively affordable desktop 3D printers would help Stratasys expand its reach into the hobbyist market, but in the end, the company all but disappeared from the hacker and maker scene. Not that many around these parts were sad to see them go — by abandoning the open source principles the company had been built on, MakerBot had already fallen out of the community’s favor by the time the buyout went through.

So today’s announcement that MakerBot and Ultimaker have agreed to merge into a new 3D printing company is a bit surprising, if for nothing else because it seemed MakerBot had transitioned into a so-called “zombie brand” some time ago. In a press conference this afternoon it was explained that the new company would actually be spun out of Stratasys, and though the American-Israeli manufacturer would still own a sizable chunk of the as of yet unnamed company, it would operate as its own independent entity.

MakerBot has been courting pro users for years.

In the press conference, MakerBot CEO Nadav Goshen and Ultimaker CEO Jürgen von Hollen explained that the plan was to maintain the company’s respective product lines, but at the same time, expand into what they referred to as an untapped “light industrial” market. By combining the technology and experience of their two companies, the merged entity would be uniquely positioned to deliver the high level of reliability and performance that customers would demand at what they estimated to be a $10,000 to $20,000 USD price point.

When MakerBot announced their new Method 3D printer would cost $6,500 back in 2018, it seemed clear they had their eyes on a different class of clientele. But now that the merged company is going to put their development efforts into machines with five-figure price tags, there’s no denying that the home-gamer market is officially in their rear-view mirror. That said, absolutely zero information was provided about the technology that would actually go into said printers, although given their combined commercial experience, it seems all but a given that these future machines will use some form of fused deposition modeling (FDM).

Now we’d hate to paint with too broad a brush, but we’re going to assume that the average Hackaday reader isn’t in the market for a 3D printer that costs as much as a decent used car. But there’s an excellent chance you’re interested in at least two properties that will fall under the umbrella of this new printing conglomerate: MakerBot’s Thingiverse, and Ultimaker’s Cura slicer. In the press conference it was made clear that everyone involved recognized both projects as vital outreach tools, and that part of the $62.4 million cash investment the new company is set to receive has been set aside specifically for their continued development and improvement.

We won’t beat around the bush — Thingiverse has been an embarrassment for years, even before they leaked the account information of a quarter million users because of their antiquated back-end. A modern 3D model repository run by a company the community doesn’t openly dislike has been on many a hacker’s wish list for some time now, but we’re not against seeing the service get turned around by a sudden influx of cash, either. We’d also be happy to see more funding go Cura’s way as well, so long as it’s not saddled with the kind of aggressive management that’s been giving Audacity users a headache. Here’s hoping the new company, whatever it ends up being called, doesn’t forget about the promises they’re making to the community — because we certainly won’t.

With Rocket Lab’s Daring Midair Catch, Reusable Rockets Go Mainstream

We’ve all marveled at the videos of SpaceX rockets returning to their point of origin and landing on their spindly deployable legs, looking for all the world like something pulled from a 1950s science fiction film.  On countless occasions founder Elon Musk and president Gwynne Shotwell have extolled the virtues of reusable rockets, such as lower operating cost and the higher reliability that comes with each booster having a flight heritage. At this point, even NASA feels confident enough to fly their missions and astronauts on reused SpaceX hardware.

Even so, SpaceX’s reusability program has remained an outlier, as all other launch providers have stayed the course and continue to offer only expendable booster rockets. Competitors such as United Launch Alliance and Blue Origin have teased varying degrees of reusability for their future vehicles, but to date have nothing to show for it beyond some flashy computer-generated imagery. All the while SpaceX continues to streamline their process, reducing turnaround time and refurbishment costs with each successful reuse of a Falcon 9 booster.

But that changed earlier this month, when a helicopter successfully caught one of Rocket Lab’s Electron boosters in midair as it fell back down to Earth under a parachute. While calling the two companies outright competitors might be a stretch given the relative sizes and capabilities of their boosters, SpaceX finally has a sparing partner when it comes to the science of reusability. The Falcon 9 has already smashed the Space Shuttle’s record turnaround time, but perhaps Rocket Lab will be the first to achieve Elon Musk’s stated goal of re-flying a rocket within 24 hours of its recovery.

Continue reading “With Rocket Lab’s Daring Midair Catch, Reusable Rockets Go Mainstream”

A putter with an Arduino attached to its shaft

This Golf Club Uses Machine Learning To Perfect Your Swing

Golf can be a frustrating game to learn: it takes countless hours of practice to get anywhere near the perfect swing. While some might be lucky enough to have a pro handy every time they’re on the driving range or putting green, most of us will have to get by with watching the ball’s motion and using that to figure out what we’re doing wrong.

Luckily, technology is here to help: [Nick Bild]’s Golf Ace is a putter that uses machine learning to analyze your swing. An accelerometer mounted on the shaft senses the exact motion of the club and uses a machine learning algorithm to see how closely it matches a professional’s swing. An LED mounted on the club’s head turns green if your stroke was good, and red if it wasn’t. All of this is driven by an Arduino Nano 33 IoT and powered by a lithium-ion battery.

The Golf Ace doesn’t tell you what part of your swing to improve, so you’d still need some external instruction to help you get closer to the ideal form; [Nick]’s suggestion is to bundle an instructor’s swing data with a book or video that explains the important points. That certainly looks like a reasonable approach to us, and we can also imagine a similar setup to be used on woods and irons, although that would require a more robust mounting system.

In any case, the Golf Ace could very well be a useful addition to the many gadgets that try to improve your game. But in case you still end up frustrated, you might want to try this automated robotic golf club.

Continue reading “This Golf Club Uses Machine Learning To Perfect Your Swing”

This Week In Security: UClibc And DNS Poisoning, Encryption Is Hard, And The Goat

DNS spoofing/poisoning is the attack discovered by [Dan Kaminski] back in 2008 that simply refuses to go away. This week a vulnerability was announced in the uClibc and uClibc-ng standard libraries, making a DNS poisoning attack practical once again.

So for a quick refresher, DNS lookups generally happen over unencrypted UDP connections, and UDP is a stateless connection, making it easier to spoof. DNS originally just used a 16-bit transaction ID (TXID) to validate DNS responses, but [Kaminski] realized that wasn’t sufficient when combined with a technique that generated massive amounts of DNS traffic. That attack could poison the DNS records cached by public DNS servers, greatly amplifying the effect. The solution was to randomize the UDP source port used when sending UDP requests, making it much harder to “win the lottery” with a spoofed packet, because both the TXID and source port would have to match for the spoof to work.

uClibc and uClibc-ng are miniature implementations of the C standard library, intended for embedded systems. One of the things this standard library provides is a DNS lookup function, and this function has some odd behavior. When generating DNS requests, the TXID is incremental — it’s predictable and not randomized. Additionally, the TXID will periodically reset back to it’s initial value, so not even the entire 16-bit key space is exercised. Not great. Continue reading “This Week In Security: UClibc And DNS Poisoning, Encryption Is Hard, And The Goat”

Automate The Freight: Autonomous Buses To Start Operation In UK

The UK will get its first full-size autonomous bus service this summer, if final road testing that begins in the next two weeks goes according to plan.

Known as Project CAVForth for the UK government’s Center for Connected and Autonomous Vehicles (CCAV) and the Forth bridge, over which the buses will travel, it is said to be the most complex test of autonomous on-road mass transit yet undertaken in Europe. The full-size single-deck motorcoaches, five in total, will ply a 22-km (14-mile) route into Edinburgh from Fife, crossing the famous Firth of Forth on the Forth Road suspension bridge. The buses will carry about 36 passengers each and run at SAE Level 4 autonomy, meaning that a safety driver is optional under good driving conditions. Continue reading “Automate The Freight: Autonomous Buses To Start Operation In UK”

A square PCB with a Raspberry Pi Pico mounted in the middle

Identify Radioactive Samples With This DIY Gamma-Ray Spectrometer

If you’re a radiation enthusiast, chances are you’ve got a Geiger counter lying around somewhere. While Geiger counters are useful to detect the amount of radiation present, and with a few tricks can also distinguish between the three types of radiation (alpha, beta and gamma), they are of limited use in identifying radioactive materials. For that you need a different instrument called a gamma-ray spectrometer.

Spectrometers are usually expensive and complex instruments aimed at radiation professionals. But it doesn’t have to be that way: physics enthusiast [NuclearPhoenix] has designed a hand-held gamma spectrometer that’s easy to assemble and should fit in a hobbyist budget. It outputs spectral plots that you can compare with reference data to identify specific elements.

A PCB with a sensor wrapped in black tape
The scintillator and sensor are wrapped in black tape to block out ambient light.

The heart of the device is a scintillation crystal such as thallium-doped sodium iodide which converts incoming gamma rays into visible light. The resulting flashes are detected by a silicon photomultiplier whose output is amplified and processed before being digitized by a Raspberry Pi Pico’s ADC. The Pico calculates the pulses’ spectrum and generates a plot that can be stored on its on-board flash or downloaded to a computer.

[NuclearPhoenix] wrote a convenient program to help analyze the output data and made all design files open-source. The hardest part to find will be the scintillation crystal, but they do pop up on auction sites like eBay now and then. We’ve featured an Arduino-based gamma spectrometer before; if you’ve always wanted to roll your own scintillators, you can do that too. Continue reading “Identify Radioactive Samples With This DIY Gamma-Ray Spectrometer”

For Once, The Long Arm Of John Deere Presses The Right Button

Over many years now we’ve covered right-to-repair stories, and among them has been a constant bête noire. The American farm machinery manufacturer John Deere whose instantly recognisable green and yellow tractors have reliably tilled the soil for over a century, have become the poster child for inappropriate use of DRM. It’s enough to make any farmer see red, but there’s a story from CNN which shows another side to manufacturer control. A Deere dealership in Melitopol, Ukraine, was looted by invading Russian forces, who took away an estimated $5m worth of farm machinery. The perfect crime perhaps, save for the Deere computer system being used to remotely disable them leaving the crooks with combine harvesters they can’t even start.

It makes for a good news story showing the Ukranians getting one over on the looters, and since on-farm thefts are a hot topic anywhere in the world it’s not entirely unexpected that Deere would have incorporated a kill-switch in their products. Recently we covered a look at how the relationship between motor vehicle owner and manufacturer is changing from one of product ownership to software licence, and this is evidently an example of the same thing in the world of machinery. It’s reported that the looters are seeking the help of tractor hackers, which may be unfortunate for them since the world’s go-to source for hacked Deere software is Ukraine. Perhaps they would be better remembering that Russia has legendary tractors of its own.

Thanks [Robert Piston] for the tip.