Genius Or Cursed, This USB-C Connector Is Flexible

USB connectors have lent themselves to creative interpretations of their mechanical specifications ever since the first experimenter made a PCB fit into a USB-A socket. The USB-C standard with its smaller connector has so far mostly escaped this trend, though this might be about to change thanks to the work of [Sam Ettinger]. His own description of his USB-C connector using a flexible PCB and a BGA-packaged ATTiny84A microcontroller is “cursed”, but we can’t decide whether or not it should also be called “genius”.

Key to this inspired piece of connector fabrication is the realization that the thickness of BGA and flex PCB together comes to the required 0.7 mm. The BGA provides the necessary stiffness, and though it’s a one-sided connector it fits the space perfectly. There are several demo boards as proofs-of-concept, and the whole lot can be found in a GitHub repository.

We can see this technique finding a use in all kinds of diminutive USB-C projects, however cursed or genius it may be. We like to see projects that push the edges of what can be done with the medium, with a nod to a previous cursed USB-C device.

Continue reading “Genius Or Cursed, This USB-C Connector Is Flexible”

A 3D-printed macropad that needs no solder or screws.

Snap-Together Macropad Does It Without Solder

Maybe we’re biased, but we think everyone has a use for a macropad. It’s just a matter of time before a highly personalized set of speed controls starts to sound like a great time-saving device to have around.

The column wire is red, and the row wire is blue. A printed clip snaps on to separate the two.Trouble is, macropads are usually kind of expensive to buy outright, and not everyone feels comfortable building keyboards. Okay, so what if you didn’t even have to solder anything? That’s the idea behind [Jan Lunge]’s hand-wired macropad.

You will still want to open a window for ventilation if you build this one, because this macropad requires a lot of 3D printing. What it doesn’t require is glue or screws, because everything snaps together.

Of course, the star of this build is [Jan]’s hot swap socket design. We especially love the little clip that holds the column wires in place while also providing a spacer between those and the row wires. Everything is connected up to a Pro Micro with non-insulated wire and held in place with bends at the ends and the magic of tension. Be sure to check out the build video after the break.

Thirsty for more than a six pack of switches? This design is easy to scale up until you run out of microcontroller inputs. At that point, you might want to add screens to keep track of all your macros.

Continue reading “Snap-Together Macropad Does It Without Solder”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Hole-y Keyboard

Can a keyboard get any more aerodynamic than this? Probably not.

According to Google Translate, kleks is Polish for (and I’m cherry-picking definitions here) the word ‘splash’. Well, [deʃhipu]’s hole-ful and soulful Kleks Keyboard certainly made a splash with me. [deʃhipu] knows what I’m talking about. As I said in Discord, I just love the look of those holes. They’re purely aesthetic and do a nice job of showing off [deʃhipu]’s routing skills.

One might argue that those holes also functional in that they increase aerodynamics and remove a not-insignificant amount of weight for travel considerations. But yeah, they mostly are there to look cool. Upon closer inspection, I saw that the two halves are joined with a series of soldered stitches that are made from a [ggconnector] bent into a u-shape. Now it’s a toss-up as to which is my favorite feature.

It seems that [deʃhipu] is never completely satisfied by this or that keyboard build, and that’s okay. That’s normal. That is . . . a big part of what this hobby is all about. Because honestly, what would be the fun in finding The One? We wonder what will happen when the droplets settle. Will [deʃhipu] be satisfied with the Kleks, or will those stylish holes become un-fillable voids?

Continue reading “Keebin’ With Kristina: The One With The Hole-y Keyboard”

An Atari 130XE's keyboard made mechanical with Kailh box pinks and 3D-printed keyswitch stems.

Atari 130XE Keyboard Now Goes Clack

Performing a resto-mod on a beloved piece of childhood technology can be quite a ride. In [Bertrand]’s case, it was the keyboard to their Atari 130XE. Although it has those cool double-shot keycaps, they’re hiding a crappy membrane underneath that could really benefit from a mechanical upgrade. Relax — the membrane part was broken.

[Bertrand] designed and printed some new stems for Kailh box pinks that can accept both of the two known variants instead of the standard Cherry MX receptacle. He also made a new PCB (natch) and a keyboard adapter to replace the membrane interface, and had a steel keyswitch plate custom cut. The so-called Atari 130MX mod can be used with an Atari 130XE computer, or as a regular keyboard for a PC if you solder in a Pico.

[Bertrand] says that this labor of love was meant to be reproduced and told us that for some folks in the Atari community, it’s already on like Donkey Kong. If you’re going to attempt this mod, know that filament printers won’t work well at all for these tiny and precise parts. [Bertrand] printed the stems on an Elegoo with a resolution of 1/20 mm (50 micrometers). On the bright side, old-new stock Atari keycaps are not that hard to find. Check it out after the break.

We love to see vintage keyboards get modern upgrades. Did you see the nuclear missile silo keyboard/trackball combo? When we read that it came from ebay, our wallet took itself to DEFCON 1.

Continue reading “Atari 130XE Keyboard Now Goes Clack”

Microsoft’s Minimal Mouse May Maximize Masochism

So it seems that Microsoft has a patent in process for a folding mouse.  It looks a whole lot like their Arc mouse, which is quite thin and already goes from curved to flat. But that’s apparently not good enough for Microsoft, who says mice in general are bulky and cumbersome to travel with. On the bright side, they do acknowledge the total lack of ergonomics in those tiny travel mice.

Microsoft filed this patent in March of 2021 and it was published in early November. The patent describes the use of an expandable shell on the top with these kerf cuts in the long sides like those used to bend wood — this is where the flexibility comes in. The patent also mentions a motion tracker, haptic feedback, and a wireless charging coil. Now remember, there’s no guarantee of this ever actually happening, and there was no comment from Microsoft about whether it will become a real rodent someday.

And now, the rant. Microsoft considers this mouse, which again is essentially an updated Arc that folds in half, to be ergonomic. Full disclosure: I’ve never used an Arc mouse. But I respectfully disagree with this assessment and believe that people should not prioritize portability when it comes to peripherals, especially those that are so small to begin with. Like, what’s the use? And by the way, isn’t anyone this concerned with portability just using the touch pad or steering stick on their laptop anyway?

Continue reading “Microsoft’s Minimal Mouse May Maximize Masochism”

A small touchscreen displaying the Runbox GUI

Touchscreen-Powered USB Hub Selectively Powers Down Devices

One of the most useful features of the Universal Serial Bus is its hot-plugging capability. You simply plug in your device, use it, and unplug it when you’re done. But what if you’ve got a huge number of USB devices? You might not want to use all of them all of the time, but repeatedly unplugging and re-plugging them is inconvenient and wears out the connectors. [Matt G] fixed this problem by building the RUNBOX: a USB hub that can be controlled through a touchscreen.

The USB hub part consists of a Yepkit YKUSH 3, which is a USB 3.1 hub that support software-controlled disconnecting of devices. [Matt] hooked up a Raspberry Pi to its ports so that it could switch devices on and off through a software command. To make it more user-friendly he added a touch screen controller and created an app using the Electron framework. This allowed him to enable or disable separate devices with a single touch: turn on the mic and webcam for video-conferencing, or fire up the VR headset and game controller for a gaming session.

A USB hub in a laser-cut wooden enclosureThe modified USB hub is housed in a laser-cut enclosure with plenty of space to hook up a variety of USB devices. The touchscreen neatly fits just above [Matt]’s keyboard; this setup was inspired by head-down displays used in aircraft which similarly use a small additional screen for peripheral functions.

Although we’ve seen switchable USB hubs before, they usually require you to either press a manual switch or run dedicated software on your PC. We’ve also seen other sleek builds combining a Raspberry Pi with a USB hub.

Smart Ruler Has Many Features

For those of us who remember old ball mice, they were a lot like modern optical mice except that they needed to be cleaned constantly. Having optical mice as a standard way of interacting with a computer is a major improvement over previous eras in computing. With extinction of the ball mouse, there are an uncountable number of cheap optical mice around now which are easy pickings for modern hacking, and this latest project from [Vipul] shows off some of the ways that optical mice can be repurposed by building a digital ruler.

The build seems straightforward on the surface. As the ruler is passed over a surface the device keeps track of exactly how far it has moved, making it an effective and very accurate ruler. To built it, the optical component of a mouse was scavenged and mated directly to a Raspberry Pi Zero W over USB. Originally he intended to use an ESP32 but could not get the USB interface to work. [Vipul] was then able to write some software which can read the information from the mouse’s PCB directly and translate it into human-readable form where it is displayed on a small screen. The entire device is housed in a custom 3D-printed enclosure to wrap everything up, but the build doesn’t stop there though. [Vipul] also leveraged the Bluetooth functionality of the Pi and wrote a smartphone app which can be used to control the ruler as well.

While the device does have some limitations in that it has to make contact with the object being measured across its entire length, there are some situations where we can imagine something like this being extremely useful especially when measuring things that aren’t a straight line. [Vipul] has also made all of the code for this project publicly available for those of us who might have other uses in mind for something like this. We’ve seen optical mice repurposed for all kinds of things in the past, too, including measuring travel distances in autonomous vehicles.

Continue reading “Smart Ruler Has Many Features”