Retrotechtacular: First Laser Transmitter Built 50 Years Ago

helium-neon-laser-transmitter

Most of the time we feature hokey film footage in our Retrotechtacular series, but we think this hack is as cool today as it was fifty years ago. [Clint] wrote in to tell us about Operation Red Line. It was an experiment performed May 3rd and 4th, 1963, which means the 50th anniversary just passed a few weeks ago. The hack involved sending data (audio in this case) over long distances using a laser. But back then you couldn’t just jump on eBay and order up the parts. The team had to hack together everything for themselves.

They built their own helium-neon laser tube, which is shown on the right. The gentlemen involved were engineers at a company called Electro-Optical System (EOS) by day, and Ham radio enthusiasts by night. With the blessing of their employer they were able to ply their hobby skills using the glass blowing and optical resources from their work to get the laser up and running. With that side of things taken care of they turned to the receiving end. Using a telescope and a photomultipler they were able to pick up the beam of light at a distance of about 119 miles. The pinnacle of their achievement was modulating audio on the transmitter, and demodulating it with the receiver.

[Clint] knows the guys who did this and wrote up a look back at the project on his own blog.

Tracking Ships Using Software-defined Radio (SDR)

tracking-ships-using-sdr

When we first started hearing about software-defined radio hacks (which often use USB dongles that ring it at under $20) we didn’t fully grasp the scope of that flexibility. But now we’ve seen several real-life examples that drive the concept home. For instance, did you know that SDR can be used to track ships? Ships large and small are required by may countries to use an Automatic Identification System (AIS) transponder. The protocol was originally developed to prevent collisions on large ships, but when the cost of the hardware became affordable the system was also brought to smaller vessels.

[Carl] wrote in to share his project (which is linked above). Just like the police scanner project from April this makes use of RTL-SDR in the form of a TV tuner dongle. He uses the SDRSharp software along with a Yagi-UDA. The captured data is then decoded and plotted on a map using ShipPlotter.

Retrotechtacular: History Of The U.S. Antiballistic Missile Systems

retrotechtacular-missle-defense

On this installment of Retrotechtacular we’re taking a look at the history of the United States Antiballistic Missile System. The cold war was a huge driver of technological development, and this missile defense is a good example. At its most basic this is a radar system capable of tracking objects in three dimensions. It utilizes separate transmitters and receivers which are synchronized to rotate at the same time.

The movie, which is about forty-five minutes, came to our attention because of [Dammitd’s] interest in the Luneburg Lens used by the system. At about 11:10 into the video after the break this component is discussed. Inside a dome like the one seen above is a reflector made of blocks of polystyrene foam which has been laced with bits of metal. This lens is stationary, with the receiver rotating around it to collect the transmitter’s waves as the echos bouncing off an object in the sky are focused by the lens.

Continue reading “Retrotechtacular: History Of The U.S. Antiballistic Missile Systems”

SDR As A Police And Fire Radio Scanner

If you’ve lost interest in that DVB dongle you bought to give software defined radio a try you should bust it back out. [Harrison Sand] just finished a guide on how to use SDR to listen in on Police and Fire radio bands.

The project, which results in the crystal clear audio reception heard after the break, uses a whole lists of packages on a Windows box to access the emergency bands. SDRSharp, which has been popular with other DVB dongle hacks, handles the hardware work. In this case the dongle is a Newsky TV28T v2 module that he picked up for a few bucks. He’s also using some support programs including the Digital Speech Decoder which turns the data into audio.

We wonder how many areas this will work for. It was our understanding that law enforcement was moving to encrypted communications systems. But all we really know about it is that you can jam the system with a children’s toy.

Continue reading “SDR As A Police And Fire Radio Scanner”

Turning An Easter Egg Hunt Into A Fox Hunt

fox

We’ve seen [Todd Harrison]’s work a few times before, but he’s never involved his son so throughly before. This past Easter, he thought it would be a good idea for his son and a few of his friends to take part in an easter egg hunt. Being the ham he is, he decided to turn an easter egg hunt into an adventure in radio direction finding, or as amateur radio operators call it, a fox hunt.

[Todd] put together a great tutorial on building a yagi – a simple directional antenna – out of a couple of pieces of PVC pipe and a few aluminum and brass rods. With this and a handheld ham set, [Todd] hid a fox along with a stuffed easter bunny and a basket of candy near a local park. Operating under the guidance of his dad, [Todd]’s son and his friends were eventually able to find the fox. Leaving candy out in the Arizona sun probably wasn’t [Todd]’s best idea – the fox, and candy, were covered in ants when they were found – but it was a great introduction to amateur radio.

Hammond Organ Sends Messages Which Can Be Decoded By A Spectrogram

hammond-organ-encodes-messages-spectrogram

Here’s an interesting use for an old organ. Let it get in on your Ham radio action. [Forrest Cook]  is showing off his project which uses a Hammond Organ to encode messages which can be displayed by a Spectrogram. We’ve seen this type of message encoding before (just not involving a musical instrument). It’s rather popular with Hams in the form of the fldigi program.

An Arduino was connected to the organ via a UNL2003 darlington array chip. This chip is driving some reed relays which make the organ connections to create the sine wave tones. With that hardware in place it’s a matter of formatting data to generate the target audio. [Forrest] wrote his own Arduino sketch which takes characters from the serial port (pushed over USB by the laptop), maps then to a stored 5×7 character font set, then drives the pins to produce the tones. As you can see in the clip after the break the resulting audio can be turned into quite readable text.

Continue reading “Hammond Organ Sends Messages Which Can Be Decoded By A Spectrogram”

Writing New Firmware For A Handheld Radio

HAM

When playing around with a cheap, handheld, dual-band radio, [Lior], a.k.a. [KK6BWA], found a schematic for a similar and even cheaper radio. He realized the programming pads were very accessible and the dev tools for the radio’s microcontroller were available from the manufacturer. After these discoveries, there really was only one thing to do: write new firmware for a $40 radio, and making a great tool for playing around in the 2 meter and 70 cm bands.

The instructions for reflashing the firmware on this radio only require an Arduino and a handful of miscellaneous components. [Lior]’s new firmware for the uv3r radio isn’t quite finished yet, but he plans on adding some really impressive features. Things like a better UI for a four-button radio, a mode for tracking satellites, a digital mode, and a computer-controlled mode are all possible and on [Lior]’s project wishlist.

Getting a $40 radio to do your bidding with an Arduino is cool enough, but [Lior] says this mod for the uv3r can be taken even further: if you’ve got an amateur radio license, it’s possible to use the uv3r to control an Arduino or other microcontroller from miles away. It’s a great hack, right up there with the USB TV tuner/software defined radio thing we saw almost exactly one year ago.

You can check out a demo of some custom software running on the uv3r after the break. The radio listens for a DTMF tone (supplied by the uv3r’s big brother, the uv5r), and plays back a three-digit DTMF tone. There’s also a more through walk through of what [Lior]’s new radio can do as well.

Continue reading “Writing New Firmware For A Handheld Radio”