DIY Yagi Antenna Sends LoRa Signals Farther

LoRa gear can be great for doing radio communications in a light-weight and low-power way. However, it can also work over great distances if you have the right hardware—and the right antennas in particular. [taste_the_code] has been experimenting in this regard, and whipped up a simple yagi antenna that can work at distances of up to 40 kilometers.

The basic mathematics behind the yagi antenna are well understood. To that end, [taste_the_code] used a simple online calculator to determine the correct dimensions to build a yagi out of 2 mm diameter wire that was tuned for the relevant frequency of 868 MHz. The build uses a 3D-printed boom a handle and holes for inserting each individual wire element in the right spot—with little measuring required once the wires are cut, since the print is dimensionally accurate. It was then just a matter of wiring it up to the right connector to suit the gear.

The antenna was tested with a Reyas RYLR998 module acting as a base station, with the DIY yagi hooked up to a RYLR993 module in the field. In testing, [taste_the_code] was able to communicate reliably from 40 kilometers away.

We’ve featured some other unique LoRa antenna builds before, too. Video after the break.

Continue reading “DIY Yagi Antenna Sends LoRa Signals Farther”

Budget-Minded Synthetic Aperture Radar Takes To The Skies

Unless you work for the government or a large corporation, constrained designs are a fact of life. No matter what you’re building, there’s likely going to be a limit to the time, money, space, or materials you can work with. That’s good news, though, because constrained projects tend to be interesting projects, like this airborne polarimetric synthetic aperture radar.

If none of those terms make much sense to you, don’t worry too much. As [Henrik Forstén] explains, synthetic aperture radar is just a way to make a small radar antenna appear to be much larger, increasing its angular resolution. This is accomplished by moving the antenna across a relatively static target and doing some math to correlate the returned signal with the antenna position. We saw this with his earlier bicycle-mounted SAR.

For this project, [Henrik] shrunk the SAR set down small enough for a low-cost drone to carry. The build log is long and richly detailed and could serve as a design guide for practical radar construction. Component selection was critical, since [Henrik] wanted to use low-cost, easily available parts wherever possible. Still, there are some pretty fancy parts here, with a Zynq 7020 FPGA and a boatload of memory on the digital side of the custom PCB, and a host of specialized parts on the RF side.

The antennas are pretty cool, too; they’re stacked patch antennas made from standard FR4 PCBs, with barn-door feed horns fashioned from copper sheeting and slots positioned 90 to each other to provide switched horizontal and vertical polarization on both the receive and transmit sides. There are also a ton of details about how the radar set is integrated into the flight controller of the drone, as well as an interesting discussion on the autofocusing algorithm used to make up for the less-than-perfect positional accuracy of the system.

The resulting images are remarkably detailed, and almost appear to be visible light images thanks to the obvious shadows cast by large objects like trees and buildings. We’re especially taken by mapping all combinations of transmit and receive polarizations into a single RGB image; the result is ethereal.

A Tiny Tapeout SDR

The Tiny Tapeout custom ASIC project has been around for a while now, and has passed through several iterations of its production. On each Tiny Tapeout chip are multiple designs, each representing an individual project, and in use the chip is configured to present that project to its pins. Given enough Tiny Tapeout chips it was inevitable that someone whould eventually make a project using two such functions, and here’s [Sylvain Munaut] with an SDR using Tiny Tapeouts 6 and 7.

At its heart is [Carsten Wulff]’s 8 bit ADC from Tiny Tapeout 6, fed by [Kolos Koblász]’s Gilbert cell RF mixer from Tiny Tapeout 7. There’s a local oscillator provided by an RP2040, and a USB interface board which sends the data to a host computer where GNU Radio does the maths. On the bench it’s receiving an FM signal generated around 30MHz by a signal generator, followed by some slightly indistinct commercial radio stations.

It’s clear that there are many better SDRs than this one, and that (as yet) Tiny Tapeout is perhaps not the radio enthusiast’s choice. But it does demonstrate beautifully how the chips are more than just curios, and we’re definitely in the era of useful on-demand ASICs.

The video is below the break, meanwhile you can learn about Tiny Tapeout from [Matt Venn]’s Supercon talk.

Continue reading “A Tiny Tapeout SDR”

Communicating With Satellites Like It’s 1957

When the first artificial satellite, Sputnik, was put into orbit around Earth, anyone in the path of the satellite could receive the beeps transmitted by the satellite provided they had some simple radio equipment. Of course, there was no two-way communication with this satellite, and it only lasted a few weeks before its batteries died. Here in the future, though, there are many more satellites in orbit and a few are specifically meant for ham radio operators. And, like the ’50s, it doesn’t take too much specialized equipment to communicate with them, although now that communication can be two-way.

The first step in this guide by [W2PAK] is to know where these satellites are in the sky. The simplest way to do that is to use a smartphone app called GoSatWatch and, when configured for a specific location, shows the satellites currently overhead. After that it’s time to break out the radio gear, which can be surprisingly inexpensive. A dual-band handheld is required since satellite uplink and downlink can be on different bands, and the antenna can be made from simple parts as well as [W2PAK] demonstrates in a separate video. Combined, this can easily be done for less than $100. [W2PAK] also goes over the proper format and etiquette for a satellite contact as well, so a new operator can pick it up quickly.

Using satellites as repeaters opens up a lot of capabilities when compared to terrestrial communications. Especially for operators with entry-level licenses who are restricted to mostly VHF and UHF, it adds a challenge as well as significantly increased range compared to ground-based repeaters and line-of-sight communications. There are plenty of activities around satellites that don’t require a license at all, too, like this project which downloads weather imagery from weather satellites.

Continue reading “Communicating With Satellites Like It’s 1957”

The Guanella 1:1 balun. (Credit: Steve Arar)

Using Guanella Baluns As Impedance Transformers

Guanella Impedance Transformer. (Credit: FesZ Electronics)
Guanella Impedance Transformer. (Credit: FesZ Electronics)

Even before entering the mystical realms of UHF design, radio frequency (RF) circuits come with a whole range of fun design aspects as well. A case in point can be found in transmission line transformers, which are commonly used in RF power amplifiers, with the Guanella transformer (balun) being one example. Allowing balanced and unbalanced  (hence ‘balun’) systems to interface without issues, they’re both very simple and very complex. This type of transformer and its various uses is explained in a video by [FesZ Electronics], and also the subject of an article by [Dr. Steve Arar] as part of a larger series, the latter of which is recommended to start with you’re not familiar with RF circuitry.

Transmission line transformers are similar to regular transformers, except that the former relies on transmission line action to transfer energy rather than magnetic flux and provides no DC isolation. The Guanella balun transformer was originally described by Gustav Guanella in 1944. Beyond the 1:1 balun other configurations are also possible, which [Dr. Arar] describes in a follow-up article, and which are also covered in the [FesZ] video, alongside the explanation of another use of Guanella transformers: as an impedance transformer. This shows just how flexible transformers are once you can wrap your mind around the theory.

We have previously covered RF amplifier builds as well as some rather interesting balun hacks.

Heading image:  The Guanella 1:1 balun. (Credit: Steve Arar)

Continue reading “Using Guanella Baluns As Impedance Transformers”

Taylorator Makes Mischief On The Airwaves

[Stephen] recently wrote in to share his experiments with using the LimeSDR mini to conduct a bit of piracy on the airwaves, and though we can’t immediately think of a legitimate application for spamming the full FM broadcast band simultaneously, we can’t help but be fascinated by the technique. Called the Taylorator, as it was originally intended to carpet bomb the dial with the collected works of Taylor Swift on every channel, the code makes for some interesting reading if you’re interested in the transmission-side of software defined radio (SDR).

The write-up talks about the logistics of FM modulation, and how quickly the computational demands stack up when you’re trying to push out 100 different audio streams at once. It takes a desktop-class CPU to pull it off in real-time, and eats up nearly 4 GB of RAM.

You could use this project to play a different episode of the Hackaday Podcast on every FM channel at once, but we wouldn’t recommend it. As [Stephen] touches on at the end of the post, this is almost certainly illegal no matter where you happen to live. That said, if you keep the power low enough so as not to broadcast anything beyond your home lab, it’s unlikely anyone will ever find out.

Continue reading “Taylorator Makes Mischief On The Airwaves”

Making A Mini AM Transmitter Better

The chances are that many of you will have made an FM “bug” style transmitter, a simple one-transistor oscillator usually driven by a small electret microphone. It’s also relatively straightforward to do the same for AM, and if you take a look through AliExpress you’ll find some modules which do just that. [Doz Television Workshop] has one, and he’s treated us to a thorough run-down of its design before addressing some of its shortcomings.

An AM transmitter is simple enough, in this case an oscillator and buffer driving a class C power amplifier. The modulation is applied by a transistor in series with the power amp, driven from an audio amplifier. Some attention has gone into the design of this one, with a proper output filter and plenty of room for tweaking to achieve proper levels and modulation density. There are some problems though — The modulator transistor is mounted upside down for the heatsink, and the frequency stability leaves something to be desired. [Doz] fixes the heatsink mounting and incorporates a DDS frequency synthesizer with an Arduino for control.

More after the break…

Continue reading “Making A Mini AM Transmitter Better”