A Tiny Tapeout SDR

The Tiny Tapeout custom ASIC project has been around for a while now, and has passed through several iterations of its production. On each Tiny Tapeout chip are multiple designs, each representing an individual project, and in use the chip is configured to present that project to its pins. Given enough Tiny Tapeout chips it was inevitable that someone whould eventually make a project using two such functions, and here’s [Sylvain Munaut] with an SDR using Tiny Tapeouts 6 and 7.

At its heart is [Carsten Wulff]’s 8 bit ADC from Tiny Tapeout 6, fed by [Kolos Koblász]’s Gilbert cell RF mixer from Tiny Tapeout 7. There’s a local oscillator provided by an RP2040, and a USB interface board which sends the data to a host computer where GNU Radio does the maths. On the bench it’s receiving an FM signal generated around 30MHz by a signal generator, followed by some slightly indistinct commercial radio stations.

It’s clear that there are many better SDRs than this one, and that (as yet) Tiny Tapeout is perhaps not the radio enthusiast’s choice. But it does demonstrate beautifully how the chips are more than just curios, and we’re definitely in the era of useful on-demand ASICs.

The video is below the break, meanwhile you can learn about Tiny Tapeout from [Matt Venn]’s Supercon talk.

Continue reading “A Tiny Tapeout SDR”

Communicating With Satellites Like It’s 1957

When the first artificial satellite, Sputnik, was put into orbit around Earth, anyone in the path of the satellite could receive the beeps transmitted by the satellite provided they had some simple radio equipment. Of course, there was no two-way communication with this satellite, and it only lasted a few weeks before its batteries died. Here in the future, though, there are many more satellites in orbit and a few are specifically meant for ham radio operators. And, like the ’50s, it doesn’t take too much specialized equipment to communicate with them, although now that communication can be two-way.

The first step in this guide by [W2PAK] is to know where these satellites are in the sky. The simplest way to do that is to use a smartphone app called GoSatWatch and, when configured for a specific location, shows the satellites currently overhead. After that it’s time to break out the radio gear, which can be surprisingly inexpensive. A dual-band handheld is required since satellite uplink and downlink can be on different bands, and the antenna can be made from simple parts as well as [W2PAK] demonstrates in a separate video. Combined, this can easily be done for less than $100. [W2PAK] also goes over the proper format and etiquette for a satellite contact as well, so a new operator can pick it up quickly.

Using satellites as repeaters opens up a lot of capabilities when compared to terrestrial communications. Especially for operators with entry-level licenses who are restricted to mostly VHF and UHF, it adds a challenge as well as significantly increased range compared to ground-based repeaters and line-of-sight communications. There are plenty of activities around satellites that don’t require a license at all, too, like this project which downloads weather imagery from weather satellites.

Continue reading “Communicating With Satellites Like It’s 1957”

The Guanella 1:1 balun. (Credit: Steve Arar)

Using Guanella Baluns As Impedance Transformers

Guanella Impedance Transformer. (Credit: FesZ Electronics)
Guanella Impedance Transformer. (Credit: FesZ Electronics)

Even before entering the mystical realms of UHF design, radio frequency (RF) circuits come with a whole range of fun design aspects as well. A case in point can be found in transmission line transformers, which are commonly used in RF power amplifiers, with the Guanella transformer (balun) being one example. Allowing balanced and unbalanced  (hence ‘balun’) systems to interface without issues, they’re both very simple and very complex. This type of transformer and its various uses is explained in a video by [FesZ Electronics], and also the subject of an article by [Dr. Steve Arar] as part of a larger series, the latter of which is recommended to start with you’re not familiar with RF circuitry.

Transmission line transformers are similar to regular transformers, except that the former relies on transmission line action to transfer energy rather than magnetic flux and provides no DC isolation. The Guanella balun transformer was originally described by Gustav Guanella in 1944. Beyond the 1:1 balun other configurations are also possible, which [Dr. Arar] describes in a follow-up article, and which are also covered in the [FesZ] video, alongside the explanation of another use of Guanella transformers: as an impedance transformer. This shows just how flexible transformers are once you can wrap your mind around the theory.

We have previously covered RF amplifier builds as well as some rather interesting balun hacks.

Heading image:  The Guanella 1:1 balun. (Credit: Steve Arar)

Continue reading “Using Guanella Baluns As Impedance Transformers”

Taylorator Makes Mischief On The Airwaves

[Stephen] recently wrote in to share his experiments with using the LimeSDR mini to conduct a bit of piracy on the airwaves, and though we can’t immediately think of a legitimate application for spamming the full FM broadcast band simultaneously, we can’t help but be fascinated by the technique. Called the Taylorator, as it was originally intended to carpet bomb the dial with the collected works of Taylor Swift on every channel, the code makes for some interesting reading if you’re interested in the transmission-side of software defined radio (SDR).

The write-up talks about the logistics of FM modulation, and how quickly the computational demands stack up when you’re trying to push out 100 different audio streams at once. It takes a desktop-class CPU to pull it off in real-time, and eats up nearly 4 GB of RAM.

You could use this project to play a different episode of the Hackaday Podcast on every FM channel at once, but we wouldn’t recommend it. As [Stephen] touches on at the end of the post, this is almost certainly illegal no matter where you happen to live. That said, if you keep the power low enough so as not to broadcast anything beyond your home lab, it’s unlikely anyone will ever find out.

Continue reading “Taylorator Makes Mischief On The Airwaves”

Making A Mini AM Transmitter Better

The chances are that many of you will have made an FM “bug” style transmitter, a simple one-transistor oscillator usually driven by a small electret microphone. It’s also relatively straightforward to do the same for AM, and if you take a look through AliExpress you’ll find some modules which do just that. [Doz Television Workshop] has one, and he’s treated us to a thorough run-down of its design before addressing some of its shortcomings.

An AM transmitter is simple enough, in this case an oscillator and buffer driving a class C power amplifier. The modulation is applied by a transistor in series with the power amp, driven from an audio amplifier. Some attention has gone into the design of this one, with a proper output filter and plenty of room for tweaking to achieve proper levels and modulation density. There are some problems though — The modulator transistor is mounted upside down for the heatsink, and the frequency stability leaves something to be desired. [Doz] fixes the heatsink mounting and incorporates a DDS frequency synthesizer with an Arduino for control.

More after the break…

Continue reading “Making A Mini AM Transmitter Better”

Does A Radome Affect Radio?

Not too far away from where this is being written is one of Uncle Sam’s NATO outposts, a satellite earth station for their comms system. Its most prominent feature is a radome, a huge golf-ball-like structure visible for miles, that protects a large parabolic antenna from the British weather. It makes sense not just for a superpower to protect its antennas from the elements, and [saveitforparts] is doing the same with a geodesic dome for his radio telescope experiments. But what effect does it have on the received signal? He’s made a video to investigate.

The US military radome is likely constructed of special RF-transparent materials, but this smaller version has a fibreglass skin and an aluminium frame. When he compares internal and external sky scans made with a small motorised satellite TV antenna he finds that the TV satellites are just as strong, but that the noise floor is higher and the frame is visible in the scan. It’s particularly obvious with such small dish, and his planned larger array should improve matters.

We would be curious to know whether an offset-fed dish constructed to minimise ground noise reaching the LNB, would improve matters further. It’s no surprise that the frame doesn’t impede the TV satellites though, as it is many wavelengths wide at that frequency. The video is below the break, and meanwhile, we featured the antenna he’s using here in 2023.

Continue reading “Does A Radome Affect Radio?”

Making The Longest-Distance Radio Contact Possible

One of the more popular activities in the ham radio world is DXing, which is attempting to communicate with radio stations as far away as possible. There are some feats that will earn some major credibility in this arena, like two-way communication with Antarctica with only a few watts of power, long-path communication around the globe, or even bouncing a signal off the moon and back to a faraway point on Earth. But these modes all have one thing in common: they’re communicating with someone who’s also presumably on the same planet. Barring extraterrestrial contact, if you want to step up your DX game you’ll want to try to contact some of our deep-space probes (PDF).

[David Prutchi] aka [N2QG] has been doing this for a number of years now and has a wealth of knowledge and experience to share. He’s using both a 3.2 meter dish and a 1.2 meter dish for probing deep space, as well as some custom feed horns and other antennas to mount to them. Generally these signals are incredibly small since they travel a long way through deep space, so some amplification of the received signals is also needed. Not only that, but since planets and satellites are all moving with respect to each other, some sort of tracking system is needed to actively point the dish in the correct direction.

With all of that taken care of, it’s time to see what sort of signals are coming in. Compared to NASA’s 70-meter antennas used to communicate with deep space, some signals received on smaller dishes like these will only see the carrier wave. This was the case when an amateur radio group used an old radio telescope to detect one of the Voyager signals recently. But there are a few cases where [David] was able to actually receive data and demodulate it, so it’s not always carrier-only. If you’re sitting on an old satellite TV dish like these, we’d certainly recommend pointing it to the sky to see what’s out there. If not, you can always 3D print one.