Sad clown holding melted ice cream cone

McDonalds Ice Cream Machines Gain A DMCA Exemption

An unlikely theatre for an act in the right-to-repair saga came last year in the form of McDonalds restaurants, whose McFlurry ice cream machines are prone to breakdown. The manufacturer had locked them down, and a franchisee with a broken machine had no option but to call them for an expensive repair job. iFixit and Public Knowledge challenged this with a request for a DMCA exemption from the Copyright Office, and now news emerges that this has been granted.

The exemption in question isn’t specific to McDonalds, instead it applies to retail food preparation equipment in general, which includes ice-cream machines. We’re guessing that franchisees won’t be breaking out the screwdrivers either, instead it’s likely to lower significantly the cost of a service contract for them and any other food industry operators hit with the same problem. Meanwhile any hackers who’ve picked up an old machine can now fix it themselves without breaking the law, and maybe the chances of your local Mickey D’s having no McFlurries have gone down.

This story has featured more than once on these pages, so catch up here, and here.

Simple PCB Repairs Keep Old Vehicle Out Of The Crusher

For those of us devoted to keeping an older vehicle on the road, the struggle is real. We know that at some point, a part will go bad and we’ll learn that it’s no longer available from the dealer or in the aftermarket, at least at a reasonable cost. We might get lucky and find a replacement at the boneyard, but if not — well, it was nice knowing ya, faithful chariot.

It doesn’t have to be that way, though, at least if the wonky part is one of the many computer modules found in most cars made in the last few decades. Sometimes they can be repaired, as with this engine control module from a Ford F350 pickup. Admittedly, [jeffescortlx] got pretty lucky with this module, which with its trio of obviously defective electrolytics practically diagnosed itself. He also had the advantage of the module’s mid-90s technology, which still relied heavily on through-hole parts, making the repair easier.

Unfortunately, his luck stopped there, as the caps had released the schmoo and corroded quite a few traces on the PCB. Complicating the repair was the conformal coating on everything, a common problem on any electronics used in rough environments. It took a bit of probing and poking to locate all the open traces, which included a mystery trace far away from any of the leaky caps. Magnet wire was used to repair the damaged traces, the caps were replaced with new ones, and everything got a fresh coat of brush-on conformal coating.

Simple though they may be, we really enjoy these successful vehicle module repairs because they give us hope that when the day eventually comes, we’ll stand a chance of being able to perform some repair heroics. And it’s nice to know that something as simple as fixing a dead dashboard cluster can keep a car out of the crusher.

Continue reading “Simple PCB Repairs Keep Old Vehicle Out Of The Crusher”

Classic Heathkit OL-1 Scope Gets Some TLC

These days, not only are oscilloscopes very common, but even a cheap instrument today would have been the envy of the world’s greatest labs not that long ago. But back in the day, the home experimenter basically had two choices: buy a surplus scope that a big company was getting rid of or build a Heathkit. [Radiotvphononut] bought an old Heathkit OL-1 scope at an estate sale and set about putting it back in service.

If you are used to a modern scope, you’ll be amazed at how simple a scope like this can be. A handful of tubes and a CRT is the bulk of it. Of course, the OL-1 is an analog scope with a 400 kHz bandwidth. It did, however, have two channels, which was a rarity at the time.

The OL-1 was sold for a few years up to 1956 and cost about $30 as a kit. There was a version with a larger screen (five whole inches) that cost an extra $40, so you can bet there were more OL-1s sold since $40 was a big ask in 1956. While they don’t seem like much today, you were probably the envy of the ham club in 1956 when you lugged this in for show and tell.

This is a long video, but it pays off at the end. Overall, this was a more capable scope than the $66 scope from 10 years earlier we looked at. Did you ever wonder how people visualized signals before the CRT? Funny, we did too.

Continue reading “Classic Heathkit OL-1 Scope Gets Some TLC”

Give Your SMD Components A Lift

When you are troubleshooting, it is sometimes useful to disconnect a part of your circuit to see what happens. If your new PCB isn’t perfect, you might also need to add some extra wires or components — not that any of us will ever admit to doing that, of course. When ICs were in sockets, it was easy to do that. [MrSolderFix] shows his technique for lifting pins on SMD devices in the video below.

He doesn’t use anything exotic beyond a microscope. Just flux, a simple iron, and a scalpel blade. Oh, and very steady hands. The idea is to heat the joint, gently lift the pin with the blade, and wick away excess solder. If you do it right, you’ll be able to put the pin back down where it belongs later. He makes the sensible suggestion of covering the pad with a bit of tape if you want to be sure not to accidentally short it during testing. Or, you can bend the pin all the way back if you know you won’t want to restore it to its original position.

Continue reading “Give Your SMD Components A Lift”

MOTU Audio Interface Resurrected After Some Reverse Engineering

These days, when something electronic breaks, most folks just throw it away and get a new one. But as hackers, we prefer to find out what the actual problem is and fix it. [Bonsembiante] took that very tack when a MOTU brand audio interface wasn’t booting. As it turns out, a bit of investigative work led to a simple and viable fix.

The previous owner had tried to get the unit fixed multiple times without success. When it ended up on [Bonsembiante]’s bench, reverse engineering was the order of the day. Based around an embedded Linux system, there was lots to poke and prod at inside, it’s just that… the system wasn’t booting, wasn’t showing up over USB or Ethernet, or doing much of anything at all.

Extracting the firmware only revealed that the firmware was actually valid, so that was a dead end. However, after some work following the boot process along in Ghidra, with some external help, the problem was revealed. Something was causing the valid firmware to fail the bootloader’s checks—and with that fixed, the unit booted. You’ll have to read the article to get the full juicy story—it’s worth it!

We’ve seen [Bonsembiante’s] work here before, when they turned an old ADSL router into a functioning guitar pedal. Video after the break.

Continue reading “MOTU Audio Interface Resurrected After Some Reverse Engineering”

Repairing A Component On A Flex Connector

It used to be you could crack open a TV or radio and really work on the components inside. The smallest thing in there was maybe a disc capacitor a little smaller than your pinky’s nail. Nowadays, consumer electronic boards are full of tiny SMD components. Luckily [StezStix Fix?] has a microscope and the other tools you need. Someone sent him an Amazon Echo Show with a bad touchscreen. Can it be fixed?

The video below shows that it can, but there’s a twist. The bad capacitor was mounted on one of those flexible PCB cables that are so hard to work with. It is hard enough not to damage these when you aren’t trying to remove and replace a component from the surface of the cable.

Continue reading “Repairing A Component On A Flex Connector”

Braun TS2 Radio Turns 68, Gets Makeover

The Braun TS2 radio was a state-of-the art tube set in 1956. Today it still looks great, but unsurprisingly, the one that [Manuel Caldeier] has needed a little tender loving care. The table radio had a distinct style for its day and push-buttons. However, the dial glass and the speaker grill needed replacement. Even more interesting, the radio has a troublesome selenium rectifier, giving him the perfect chance to try out his new selenium rectifier solid-state replacement.

The radio is as good-looking inside as it is outside. You can tell that this isn’t his first restoration, as he has several tricks to test things at different stages of the project.

While the radio looked good, it smelled of smoke, which required a big effort to clean. The dial glass was intact enough for him to duplicate it in a graphic program and print it on a transparent adhesive sticker. With a deep breath, he removed the original markings from the glass so he could add the sticker to it. That didn’t work because the label needed cutouts. So now he is waiting for a piece of acrylic that will have the art UV printed on it.

We want to see the next part as we imagine the radio sounds as good as it looks when it is working. If you want to know more about the rectifier replacement, we covered that earlier. Even years later, Braun would have a clean aesthetic.

Continue reading “Braun TS2 Radio Turns 68, Gets Makeover”