RADUGA: The Retro Computer From Behind The Curtain

When [Kasyan] was six years old, he saw a RADUGA computer, a Russian unit from the 1990s, and it sparked his imagination. He has one now that is a little beat up, but we feel like he sees it through his six-year-old eyes as a shiny new computer. The computer, which you can see in the video below, was a clone of the Spectrum 48K.

The box is somewhat klunky-looking, and inside is also a bit strange. The power supply is a — for the time — state-of-the-art switching power supply. Since it wasn’t in good shape, he decided to replace it with a more modern supply.

The main board was also not in good shape. A Zilog CPU is on a large PCB with suspicious-looking capacitors. The mechanical keyboard is nothing more than a array of buttons, and wouldn’t excite today’s mechanical key enthusiast.

Continue reading “RADUGA: The Retro Computer From Behind The Curtain”

Remembering Memory: EMS, And TSRs

You often hear that Bill Gates once proclaimed, “640 kB is enough for anyone,” but, apparently, that’s a myth — he never said it. On the other hand, early PCs did have that limit, and, at first, that limit was mostly theoretical.

After all, earlier computers often topped out at 64 kB or less, or — if you had some fancy bank switching — maybe 128 kB. It was hard to justify the cost, though. Before long, though, 640 kB became a limit, and the industry found workarounds. Mercifully, the need for these eventually evaporated, but for a number of years, they were a part of configuring and using a PC.

Why 640 kB?

The original IBM PC sported an Intel 8088 processor. This was essentially an 8086 16-bit processor with an 8-bit external data bus. This allowed for cheaper computers, but both chips had a strange memory addressing scheme and could access up to 1 MB of memory.

In fact, the 8088 instructions could only address 64 kB, very much like the old 8080 and Z80 computers. What made things different is that they included a number of 16-bit segment registers. This was almost like bank switching. The 1 MB space could be used 64 kB at a time on 16-byte boundaries.

So a full address was a 16-bit segment and a 16-bit offset. Segment 0x600D, offset 0xF00D would be written as 600D:F00D. Because each segment started 16-bytes after the previous one, 0000:0020, 0001:0010, and 0002:0000 were all the same memory location. Confused? Yeah, you aren’t the only one.

Continue reading “Remembering Memory: EMS, And TSRs”

The ZX Spectrum Logic Analyzer

We know [Happy Little Diodes] frequently works with logic analyzer projects. His recent wireless logic analyzer for the ZX Spectrum is one of the oddest ones we’ve seen in a while. The heart of the system is an RP2040, and there are two boards. One board interfaces with the computer, and another hosts the controller.

The logic analyzer core is powered by a common open-source analyzer from [Eldrgusman]. This is one of the nice things about open source tools. Most people probably don’t need a logic analyzer that plugs directly into a ZX Spectrum. But if you do, it is fairly simple to repurpose a more generic piece of code and rework the hardware, if necessary.

Continue reading “The ZX Spectrum Logic Analyzer”

Unwinding An Unusual Slide Rule

If the Otis King slide rule in [Chris Staecker’s] latest video looks a bit familiar, you might be getting up there in age, or you might remember seeing us talk about one in our collection. Actually, we have two floating around one of the Hackaday bunkers, and they are quite the conversation piece. You can watch the video below.

The device is often mistaken for a spyglass, but it is really a huge slide rule with the scale wrapped around in a rod-shaped form factor. The video says the scale is the same as a 30-inch scale, but we think it is closer to 66 inches.

Continue reading “Unwinding An Unusual Slide Rule”

Tearing Down A Forgotten Video Game

Remember Video Volley? No? We don’t either. It looks like it was a very early video game console that could play tennis, hockey, or handball. In this video, [James] tears one apart. If you are like us, we are guessing there will be little more than one of those General Instrument video game chips inside.

These don’t look like they were mass-produced. The case looks like something off the shelf from those days. The whole thing looks more like a nice homebrew project or a pretty good prototype. Not like something you’d buy in a store.

Continue reading “Tearing Down A Forgotten Video Game”

Another Old ThinkPad Gets A New Motherboard

The Thinkpad line of laptops, originally from IBM, and then from Lenovo, have long been the choice of many in our community. They offer a level of robustness and reliability missing in many cheaper machines. You may not be surprised to find that this article is being written on one. With such a following, it’s not surprising that a significant effort has gone into upgrading older models. For example, we have [Franck Deng]’s new motherboard for the Thinkpad X200 and X201. These models from the end of the 2000s shipped as far as we can remember with Core 2 Duo processors, so we can imagine they would be starting to feel their age.

It’s fair to say the new board isn’t a cheap option, but it does come with a new Core Ultra 7 CPU, DDR5 memory, M.2 interfaces for SSDs alongside the original 2.5″ device, and USB-C with Thunderbolt support. There are a range of screen upgrade options. For an even more hefty price, you can buy a completely rebuilt laptop featuring the new board. We’re impressed with the work, but we have to wonder how it would stack up against a newer Thinkpad for the price.

If you’re curious to see more of the same, this isn’t the first such upgrade we’ve seen.

Thanks [Max] for the tip.

PoE-powered GPIB Adapter With Ethernet And USB-C Support

In the world of (expensive) lab test equipment the GPIB (general purpose interface bus) connection is hard to avoid if you want any kind of automation, but nobody likes wrangling with the bulky cables and compatibility issues when they can just use Ethernet instead. Here [Chris]’s Ethernet-GPIB adapter provides an easy solution, with both Power over Ethernet (PoE) and USB-C power options. Although commercial adapters already exist, these are rather pricey at ~$500.

Features of this adapter include a BOM total of <$50, with power provided either via PoE (802.3af) or USB-C (5V-only). The MCU is an ATmega4809 with the Ethernet side using a Wiznet W5500 SPI Ethernet controller. There is also a serial interface (provided by a CH340X USB-UART adapter), with the firmware based on the AR488 project.

The adapter supports both the VXI-11.2 and Prologix protocols, though not at the same time (due to ROM size limitations). All design documents are available via the GitHub repository, with the author also selling assembled adapters and providing support primarily via the EEVBlog forums.