Barbot Mixes Drinks Perfectly With Web Interface

barbot-with-laptop

Are you good at mixing drinks? We think this Barbot might give you a run for your money!

Not only does this Barbot have room for 5 different liquors, but you can combine them any way you want with an extremely slick web interface that you can check out for yourself.

During initial setup, you add your chosen liquors to the machine and then using the configure mode in the web interface, you tell Barbot what it has to work with. Once these fields are populated, Barbot will list various drinks that it is capable of mixing with the provided ingredients. It also has a cleaning mode, which allows you to prime the pumps and set administrative access for your parties.

The hardware behind this build is a BeagleBone Black running Ubuntu 13.04 with Apache2, MySQL, and PHP to host the web interface — bind and DHCP are used to create the web portal using a USB WiFi dongle. The online interface directly controls the pumps using PHP via the GPIOs.

To see a full demonstration stick around after the break for the included video.

Continue reading “Barbot Mixes Drinks Perfectly With Web Interface”

Roving Hexapod Poops Out 3D Prints

[Jia Wu, Mary Sek, and Jeff Maeshiro], students  at the California College of the Arts (CCA) in San Francisco, took on the task of developing a walking 3D printer. The result is Geoweaver, a hexapod robot with a glue gun extruder system. Hackaday has seen walking CNC machines before, but not a 3D printer. Geoweaver uses two servos on each of its six legs to traverse the land. The team was able to program several gaits into the robot, allowing it to traverse uneven terrain. Walking is hard enough on its own, but Geoweaver also uses a glue gun based extruder to make 3D prints. The extruder head uses two servos to swing in a hemispherical arc. The arc is mapped in software to a flat plain plane, allowing the robot to drop a dollop of glue exactly where it is programmed to. Geoweaver doesn’t include much in the way of on board processing – an Arduino Uno is used to drive the 15 servos. Those servos coupled with a glue gun style heater pull quite a bit of power, which has earned Geoweaver nicknames such as Servo Killer, Eater of Shields, Melter of Wires, and Destroyer of Regulators.

Geoweaver’s prints may not be much to look at yet, however the important thing to remember is that one of the future visions for this robot is to print on a planetary scale. Geoweaver currently uses reacTIVision to provide computer control via an “eye in the sky”. ReacTIVision tracks a fiducial marker on the robot, and applies it to a topographical map of the terrain. This allows Geoweaver to change its height and print parameters depending on the flatness of the ground it is printing on. On a scaled up Geoweaver, reacTIVision would be replaced by GPS or a similar satellite based navigation system.  Most of the software used in Geoweaver is opensource, including Grasshopper and Firefly, written by the team’s professor, [Jason Kelly Johnson]. The exception is Rhino 5. We would love to see an option for a free or open source alternative to laying out ~$1000 USD in software for our own Geoweaver.

Continue reading “Roving Hexapod Poops Out 3D Prints”

I Am NXT 3-Point Bend Tester. Please Insert Girder.

Learning with visuals can be very helpful.  Learning with models made from NXT Mindstorms is just plain awesome, as [Rdsprm] demonstrates with this LEGO NXT 3-point bend tester that he built to introduce freshmen to flexural deflection and material properties. Specifically, it calculates Young’s modulus using the applied force of a spring and the beam’s deflection. [Rdsprm] provides a thorough explanation in the About section of the YouTube video linked above, but the reddit comments are definitely a value-add.

[Rdsprm] built this from the Mindstorms education base set (9797) and the education resource set (9648). Each contestant endures a 5-test battery and should produce the same result each time. The motor in the foreground sets the testing length of the beam, and the second motor pulls the spring down using a gearbox and chain.

This method of deflection testing is unconventional, as [Rdsprm] explains. Usually, the beam is loaded incrementally, with deflection measured at each loading state. Here, the beam is loaded continuously. Vertical deflection is measured with a light sensor that reads a bar code scale on the beam as it passes by. The spring position is calculated and used to determine the applied force.

[Rdsprm] analysed the fluctuation in GNU Octave and has graphs of the light sensor readings and force-deflection. No beams to bend with your Mindstorms? You could make this Ruzzle player instead.

Continue reading “I Am NXT 3-Point Bend Tester. Please Insert Girder.”

DARPA Robotics Challenge Trials Wrap Up

schaft-drive

The DARPA robotics challenge trials 2013 are have finished up. The big winner is Team Schaft, seen above preparing to drive in the vehicle trial. This isn’t the end of the line for DARPA’s robotics challenge – there is still one more major event ahead. The DARPA robotics finals will be held at the end of 2014. The tasks will be similar to what we saw today, however this time the team and robot’s communications will be intentionally degraded to simulate real world disaster situations. The teams today were competing for DARPA funding. Each of the top eight teams is eligible for, up to $1 million USD from DARPA. The teams not making the cut are still welcome to compete in the finals using other sources of funding.

The trials were broken up into 8 events. Door, Debris, Valve, Wall, Hose, Terrain, Ladder, and Vehicle. Each trial was further divided into 3 parts, each with one point available. If a robot completed the entire task with no human intervention it would earn a bonus point. With all bonuses, 32 points were available. Team Schaft won the event with an incredible total of 27 points. In second place was Team IHMC (Institute for Human Machine Cognition) with 20 points. Team IMHC deserves special praise as they were using a DARPA provided Boston Dynamics Atlas Robot. Teams using Atlas only had a few short weeks to go from a completely software simulation to interacting with a real world robot. In third place was Carnegie Mellon University’s Team Tartan Rescue and their Chimp robot with 18 points.

The expo portion of the challenge was also exciting, with first responders and robotics researchers working together to understand the problems robots will face in real world disaster situations. Google’s recent acquisition — Boston Dynamics — was also on hand, running their WildCat and LS3 robots. The only real downside to the competition was the coverage provided by DARPA. The live stream left quite a bit to be desired. The majority of videos on DARPA’s YouTube channel currently consist of 9-10 hour recordings of some of the event cameras. The wrap-up videos also contain very little information on how the robots actually performed during the trials. Hopefully as the days progress, more information and video will come out. For now, please share the timestamp and a description of your favorite part with your comments.

Continue reading “DARPA Robotics Challenge Trials Wrap Up”

Trainable Robotic Arm

customer_projects_arm-learning

When [Robert] realized Adafruit is now selling analog feedback servos, he decided he just had to make a programmable robot arm that could be trained like the commercially available Baxter robot.

The neat thing with the analog feedback servos is it takes all the complexity out of training a robot. All you have to do is put the robot in teach mode, physically move the robot’s joints to the positions you want, and save your program! Depending on your application, it certainly beats trying to work out the fun kinematics equations…

Anyway, the full guide available on Adrafuit’s learning system provides instructions on how to build your own arm from scratch (well, with a 3D printer) or how to replace the servos in a pre-made toy robotic arm you might already have sitting around. It’s very thorough and includes all the code you need for your Arduino too.

Stick around after the break to see how the robot works!

Continue reading “Trainable Robotic Arm”

DARPA Robotics Challenge Trials Day 1

darpa-val1

Today was the first of two days of trials at the DARPA Robotics challenge at Homestead-Miami Speedway in Florida. Created after the Japan’s Fukushima nuclear disaster, The robotics challenge is designed to advance the state of the art of robotics. The trials range from driving a car to clearing a debris field, to cutting through a wall. Robots score points based on their performance in the trials. Much of the day was spent waiting for teams to prepare their robots. There were some exciting moments however, with one challenger falling through a stacked cinder block wall.

Pictured above is Valkyrie from NASA JPL JSC. We reported on Valkyrie earlier this month. Arguably one of the better looking robots of the bunch, Valkyrie proved to be all show and no go today, failing to score any points in its day 1 trials. The day one lead went to Team Schaft, a new robot from Tokyo based startup company Schaft inc. Schaft scored 18 points in its first day. In second place is the MIT team  with 12 points. Third place is currently held by Team TRACLabs with 9 points. All this can change tomorrow as the second day of trials take place. The live stream will be available from 8am to 7pm EST on DARPA’s robotics challenge page.

Continue reading “DARPA Robotics Challenge Trials Day 1”

A Balancing, Walking Cube Named Cubli

Meet Cubli! Cubli is a 15 x 15 x 15cm robotic cube that can roll around and balance on its corners using a series of gyroscopes.

The project has been going strong since February 2011 at the Institute for Dynamic Systems and Control in Zurich, where it is starting to get quite impressive. We first shared Cubli earlier this year, when it was just a wee 2-dimensional and corded 3-dimensional prototype.

Since then, it has become a fully enclosed wireless cube capable of jumping up on its end, balancing, and controlled falling — it can walk and roll! To do this, it has three large reaction wheels on each axis which can impart their angular velocity on the entire cube when the braked, allowing it to move in any direction.

According to the video after the break, the team is just building the cube “because they can”, however other researchers are interested in the technologies applications in self-assembling robots, and even planetary exploration.

Continue reading “A Balancing, Walking Cube Named Cubli”