Android Controlled Robot Extravaganza

We have no idea why, but since we featured Botiful, the Android-powered telepresence robot a few days ago, the tip line has been awash in robot/Android mashups. Here’s a few of the cool ones.

Using an Android as a remote control

[Stef] used a Samsung Galaxy S3 to control an old rc tank. The Android sends accelerometer and gyro data over Bluetooth to an Android where it powers a pair of H-bridges to turn the wheels.

Turning Android into a Robotic Operating System

ROS, or the Robot Operating System, provides a bunch of utilities for any type of robot such as point-cloud mapping to multi-joint arm control. [Lentin] sent in a guide on installing ROS on Android. So far, he can get accelerometer data, stills from the on-board camera, have the robot speak and use the small vibrator motor. Here’s a (somewhat limited) demo of [Lentin] playing with ROS in a terminal.

“Just a quick procrastination project”

Last May, [Josh] wrote in asking if a tread-based robot controlled through Skype would be a cool idea. We said ‘hell yeah’ and [Josh] scurried off to his workshop for a few months. He’s back with his tank-based robot. One really interesting bit is the robot responds to DTMF tones, allowing it to be controlled through Skype without any additional hardware. That’s damn clever. You can see a video of the SkypeRobot after the break.

Continue reading “Android Controlled Robot Extravaganza”

You Are A Sack Of Meat, Easily Punctured By Stompy

 

It may not be as cool as a bear riding a jet ski on a shark in outer space, but Stompy, the giant, rideable walking hexapod comes very close.

A few months ago, we caught wind of a gigantic rideable hexapod project brewing at the Artisan’s Asylum hackerspace in Somerville, MA. The goal was to build an 18-foot wide, two ton rideable hexapod robot, with the side benefit of teaching students how to weld, code, and other subjects related to giant machines and mechatronics.

The Stompy team has now launched a Kickstarter asking for donations to pay for the materials, plasma cutting, and other bits of hardware required to make Stompy a reality. Since there isn’t much information on amateur level hydraulics, the project is open source; the trials of building Stompy will be made public freely available for any other giant robot project.

Team Stompy has successfully built, debugged, and tested a half-size prototype of one hydraulically powered leg that is able to ‘row’ across the floor under its own power. This is a huge achievement for the team and now they’ll move on to the full-size single leg prototype.

You can see the team’s single leg prototype in action after the break.

Continue reading “You Are A Sack Of Meat, Easily Punctured By Stompy”

Another Android Controlled Roving Robot

[Sam] has been working on a cellphone controlled robot for a while now and with the launch of a few similar Kickstarter campaigns he thought it would be good to share his progress so far.

[Sam]’s robot is controlled by an Android device with the help of an IOIO dev board. This setup provides more than enough computational power to send a robot on its merry way, and has the bonus of allowing [Sam] to connect additional sensors.

The case is designed to put the headers on the IOIO board on the outside, just above a little shelf perfect for holding a breadboard or two. With the right hardware and software setup, [Sam]’s bot can rove around the neighborhood collecting data and sending it to a server in real time.

If you’re wondering why a tiny Android/IOIO powered sounds so familiar, it might be because of the Botiful robot we posted a few days ago. Unlike Botiful, [Sam] can only control his treaded Android bot through Bluetooth as the whole ‘programming a web interface’ is a bit over his head. Hopefully [Sam] will meet an enthusiastic coder when he brings his Arduino tank to Dorkbots Boston this evening.

You can check out a prototype of [Sam]’s bot in action after the break.

Continue reading “Another Android Controlled Roving Robot”

Robotic Manta Ray (Mantabot)

The Robotic Manta Ray codenamed MantaBot created by the Bio-Inspired Engineering Research Laboratory (BIER Lab) is set to make a splash. The next evolution in underwater Robotics is here. We have seen the likes of robotic fish and Jelly fish now to be added to the school is the MantaBot which has been designed to mimic the unique swimming motion of the Manta Ray,

This biologically inspired under water robot’s has been designed with a primary goal to be autonomous using its onboard electronics to make its own decisions to navigate its watery domain. BIER Lab has received major funding from the Department of Defense (DoD) Multi-disciplinary University Research Initiative (MURI) program. Part of its goal in the long run is to reverse engineer the biological systems of such creatures to the point of creating simulated artificial skin and muscle.

[Via dvice.com]

Continue reading “Robotic Manta Ray (Mantabot)”

NXT Android Telepresence Robot

Here is a telepresence robot that uses an Android device and LEGO NXT parts. [Wolfgang] had an extra phone on hand and decided to put it to good use. The Mindstorm parts make it really easy to produce a small robot, and adding the phone really ups the computing and connectivity options available to him.

The Android device is able to control the NXT bot via Bluetooth. [Wolfgang] didn’t go into detail on that part, but you can get some pointers on the topic from this other Android controlled Mindstorm project. [Wolfgang] wanted the ability to check in at home when he’s travelling. He uses nanohttpd on the Android device to serve up a simple web interface. It uses HTML5 to push a snapshot from the phone’s camera as user feedback, and provides a set of directional arrows which let him drive the bot around.

Obviously this thing is going to run out of juice if he’s away for too long. To combat that problem he included a battery which powers both the NXT parts and the phone. Now he just needs to build an inductive charging station and he’ll really be set.

Continue reading “NXT Android Telepresence Robot”

A Large Hexapod Made Of Wood And PVC Pipe

pvc hexapod rc tests with Evie the dog

Although not the biggest hexapod walker we’ve seen by any means, this one is nonetheless worth a mention. Made with windshield wiper motors, PVC pipe, and lots of wood, it’s still a good size ‘bot. It’s a work in progress, but check out the video of it’s legs being tested as well as one of it’s preliminary assembly after the break.

Control is similar to this little hexapod that we’ve featured before in the the front and back legs are driven by a motor and linked together using threaded rod.  In this case though, the rod is 1/4 – 20, much larger than the 4-40 rod used by it’s little predecessor. Also unlike little PegLeg, the middle legs are independently actuated, not linked together. This should allow for some different modes of locomotion.

Different modes of locomotion, that is, if it’s able to walk. Although able to pick itself up, the middle legs are barely strong enough to support the large battery and powerful, but heavy, automotive motors. This is an introductory post to this project, and everything will hopefully be worked out and explained in time. Be sure to check back and see how this robot progresses, and the details of the different elements of this ‘bot. Continue reading “A Large Hexapod Made Of Wood And PVC Pipe”

Lab Robot Demonstrates Mastery Of Culturing And Other Tasks

Lab work is a pretty good job. But sometimes being around hazardous samples, or completing tedious and repetitive tasks leave scientists looking for a different way. This robot seems to know its way around a lab. The folks behind it claim it’s more precise than veteran lab technicians, and that it can complete the tasks in half the time.

After watching the video (embedded after the jump) we’re quite impressed. The dexterity shown by the system illustrates care down to the tiniest of details. This is because everything the robot works with has been passed through a 3D scanner in order to establish a virtual model. This way the training is done in the computer. The robot can be run though any number of scenarios before it actually starts working with infectious materials like the influenza virus and other not-so-nice microbes.

What we’d really like to know is what kind of visual feedback system is being used.

Continue reading “Lab Robot Demonstrates Mastery Of Culturing And Other Tasks”