2020 saw the world rocked by widespread turmoil, as a virulent new pathogen started claiming lives around the globe. The COVID-19 pandemic saw a rush on masks, air filtration systems, and hand sanitizer, as terrified populations sought to stave off the deadly virus by any means possible.
Despite the fresh attention given to indoor air quality and airborne disease transmission, there remains one technology that was largely overlooked. It’s the concept of upper-room UV sterilization—a remarkably simple way of tackling biological nastiness in the air.
These days, very few of us use optical media on the regular. If we do, it’s generally with a slot-loading console or car stereo, or an old-school tray-loader in a desktop or laptop. This has been the dominant way of using consumer optical media for some time.
Early CD players, like this top-loading Sony D-50, didn’t use caddies. Credit: Binarysequence, CC BY-SA 4.0
The Compact Disc, as developed by Phillips and Sony, was first released in 1982. It quickly became a popular format for music, offering far higher fidelity than existing analog formats like vinyl and cassettes. The CD-ROM followed in 1985, offering hundreds of megabytes of storage in an era when most hard drives barely broke 30 MB. The discs used lasers to read patterns of pits and lands from a reflective aluminum surface, encased in tough polycarbonate plastic. Crucially, the discs featured robust error correction techniques so that small scratches, dust, or blemishes wouldn’t stop a disc from working.
Notably, the first audio CD player—the Sony CDP-101—was a simple tray-loading machine. Phillips’ first effort, the CD100, was a top-loader. Neither used a caddy. Nor did the first CD-ROM drives—the Phillips CM100 was not dissimilar from the CD100, and tray loaders were readily available too, like the Amdek Laserdrive-1. Continue reading “Why Did Early CD-ROM Drives Rely On Awkward Plastic Caddies?”→
If you ask around a wood shop, most people will agree that the table saw is the most dangerous tool around. There’s ample evidence that this is true. In 2015, over 30,000 ER visits happened because of table saws. However, it isn’t clear how many of those are from blade contact and how many are from other problems like kickback.
We’ve seen a hand contact a blade in a high school shop class, and the results are not pretty. We’ve heard of some people getting off lucky with stitches, reconstructive surgery, and lifelong pain. They are the lucky ones. Many people lose fingers, hands, or have permanent disfiguration and loss of function. Surgeons say that the speed and vigor of the blade means that some of the tissue around the cut vanishes, making reconstruction very difficult.
Modern Tech
These days, there are systems that can help prevent or mitigate these kinds of accidents. The most common in the United States is the patented SawStop system, which is proprietary — that is, to get it, you have to buy a saw from SawStop.
When you hear the cry of “Man Overboard!” on a ship, it’s an emergency situation. The sea is unkind to those that fall from their vessel, and survival is never guaranteed—even in the most favorable conditions. Raging swell and the dark of night can only make rescue more impossible.
Over the centuries, naval tradition has included techniques to find and recover the person in the water as quickly and safely as possible. These days, though, technology is playing an ever-greater role in such circumstances. Modern man-overboard (MOB) systems are designed to give crews of modern vessels a fighting chance when rescuing those in peril.
There are a heap of cool aspects to this specific Sony Vaio. It’s outrageously cute and purse-sized, the keyboard is nice enough for typing, motherboard schematics are available (very important!), and it’s not too terribly expensive. Of course, the most motivating aspect is that I happen to own one, its mainboard is not in the best state, and I’ve been itching to make it work.
It turned out to be a pretty complicated project, and, there was plenty to learn – way more than I expected in the beginning, too. I’m happy to announce that my v1 PCB design has been working wonders so far, and there are only a few small parts of it left untested.
I know that some of you might be looking to rebuild a lovely little computer of your choice. Hell, this particular laptop has had someone else rebuild it into a Pi-powered handheld years ago, as evidenced by this majestic “mess of wires” imgur build log! In honor of every hacker who has gotten their own almost-finished piece of hardware waiting for them half-assembled on the shelf, inside a KiCad file, or just inside your mind for now, let’s go through the tricks and decisions that helped make my board real.
Image by [John Anderson] via Hackaday.IOAs you may have guessed, I really dig the looks of this thing. The paint job on the display is great, but the stripes on the keyboard and badging on are on another level. Be sure to check out the entire gallery on this one.
About that keyboard — [John] started this project with two incomplete keyboards that each had a couple of broken switches. Since the two keyboards were compliments of each other parts-wise, they made a great pair, and [John] only had to swap out three switches to get it up and clacking.
In order to make it work with the Pi, [John] wrote a user-mode serial driver that uses the uinput kernel module to inject key events to the kernel. But he didn’t stop there.
Although the Pi supports composite video out, the OS doesn’t provide any way to turn off the chroma color signal that’s modulated on top of the basic monochrome NTSC signal, which makes the picture look terrible. To fix that, he wrote a command-line app that sets up the video controller to properly display a monochrome NTSC signal. Happy AVRing on your amazing setup, [John]! Continue reading “Keebin’ With Kristina: The One With The Curvy Centerfold”→
It looks like we won’t have Cruise to kick around in this space anymore with the news that General Motors is pulling the plug on its woe-beset robotaxi project. Cruise, which GM acquired in 2016, fielded autonomous vehicles in various test markets, but the fleet racked up enough high-profile mishaps (first item) for California regulators to shut down test programs in the state last year. The inevitable layoffs ensued, and GM is now killing off its efforts to build robotaxis to concentrate on incorporating the Cruise technology into its “Super Cruise” suite of driver-assistance features for its full line of cars and trucks. We feel like this might be a tacit admission that surmounting the problems of fully autonomous driving is just too hard a nut to crack profitably with current technology, since Super Cruise uses eye-tracking cameras to make sure the driver is paying attention to the road ahead when automation features are engaged. Basically, GM is admitting there still needs to be meat in the seat, at least for now.