Radio Amateurs & Skywatchers Rejoice, Sat Operators Worry: Solar Storm Incoming

How do you look back over your life and divide it up? Maybe by decades, cultural moments, or geopolitical events. For radio amateurs with older callsigns there’s a temptation to do so by solar cycles, as the roughly 11-year period of the Sun’s activity had a huge effect on radio propagation through the charge it creates in the upper atmosphere. We’re now in solar cycle 25, numbered since the 18th century when the science of solar observation began, and as never before we’re surrounded by information from experts such as [Dr. Tamitha Skov], the so-called [Space Weather Woman]. When she says something is on the way we listen, so a recent Tweet predicting a direct hit from a solar storm with a good probability of auroras in lower latitudes is very much worth sharing.

We must extend our commiserations to readers in equatorial climes and ever through the lower half of the USA, southern Europe, the Middle East, India, Japan, and China. You won’t see the aurora we’ll catch in Europe along with our friends in New Zealand, Canada, Russia, and northern USA. But even then to those of us at moderate latitudes an aurora is a pretty rare event, so we’re hoping for clear skies on the 2nd of February and would advise you to look out too if you’re in the likely zone even if they won’t be quite as impressive as those in our header picture. Meanwhile radio amateurs everywhere don’t have to see pretty lights in the sky to reap the benefits in terms of propagation, so happy DX hunting! The Tweet is embedded below the break, so you can play the timeline for yourselves.

Continue reading “Radio Amateurs & Skywatchers Rejoice, Sat Operators Worry: Solar Storm Incoming”

Apollo Guidance Computer Gets The Rust Treatment

Seems like all the cool kids are rewriting legacy C programs in Rust these days, so we suppose it was only a matter of time before somebody decided to combine the memory-safe language with some of the most historically significant software ever written by way of a new Apollo Guidance Computer (AGC) emulator. Written by [Felipe], the Apache/MIT licensed emulator can run either ROM files made from the computer’s original rope core memory, or your own code written in AGC4 assembly language.

It’s worth noting that the emulator, called ragc, needs a bit of help before it can deliver that authentic Moon landing experience. Specifically, the code only emulates the AGC itself and stops short of recreating the iconic display and keyboard (DSKY) module. To interact with the programs running on the virtual AGC you’ll need to also install yaDSKY2, an open source project that graphically recreates the panel Apollo astronauts actually used to enter commands and get data from the computer.

Of course, the next step would be to hack in support for talking to one of the physical recreations of the DSKY that have graced these pages over the years. Given the limitations of the AGC, we’d stop short of calling such an arrangement useful, but it would certainly make for a great conversation starter at the hackerspace.

Thanks for the tip, [CJ].

From Table to Orbit: Salt

Saving Martian Colonists Using Table Salt And Rocket Science

Imagine for a moment that you are a member of an early Mars colony. You’re stranded, and the only way to get a message home is to launch a radio well above the surface. To make matters worse, you’ve got no rockets! It was this thought experiment that has motivated [Thoisoi2] to experiment with making a rocket motor using only ingredients and methods available to your average Martian colonist. The methods he has chosen can be seen in the video below the break.

If you skipped Rocketry 101, a quick refresher might help: Rockets work by burning a fuel in an enclosed chamber and then expelling it at high speed in one direction. To get the fuel to burn more quickly (and therefore adding more oomph to the angry end) a complement to the fuel called an Oxidizer is added. It serves to create an oxygen rich environment for the fuel to burn in. It’s the same reason a oxy-propane torch burns hotter than propane by itself.

Sugar Fuels Go Boom
The Sugar Powered Rocket Motor says “Boom!”

Firstly, a stranded Martian would need rocket fuel. If you recall the 1999 movie October Sky, four high school kids used table sugar as their fuel. You might also recall that those tended to get all explody. This volatility caused [Thoisoi2] to eschew sugar as a fuel in favor of a fuel that would also be available to any Martian colonist but be far less likely to cause Rapid Unplanned Disassembly.

What about the oxidizer? In October Sky, the boys experimented with Potassium Chlorate. This is commonly used in rockets but may be more difficult to obtain for your average Mars colonist. But, it turns out that Potassium Chlorate and Sodium Chlorate which can be prepared from table salt will work equally. It’s quite a bit more involved than that however.

Simply adding salt and fuel does not a rocket motor make. The nuances, the science, and the chemistry are all laid out in the wonderful video that [Thoisoi2] has put together, and we are sure you’ll enjoy it as much as we did.

You’ll also get to find out if our stranded Martian ever makes it home or if his potato farming was for naught.

We’d also like to echo the warning in the video: This is an experiment that is pretty dangerous, so don’t try this at home! Definitely try it at somebody else’s house first. Or on the surface of Mars.

Recently Hackaday covered another great attempt at making a rocket motor at home, although this one was a bit less successful, but every bit as interesting! Continue reading “Saving Martian Colonists Using Table Salt And Rocket Science”

Apollo Comms Flight Hardware Deep Dive

You no doubt recall the incredible Apollo Guidance Computer (AGC) reverse engineering and restoration project featured on the CuriousMarc YouTube channel a few years ago. Well, [Marc] and the team are at it again, this time restoring the Apollo Unified S-Band tracking and communication system flight hardware. As always, the project is well documented, carefully explained, full of problems, and is proceeding slowly despite the lack of documentation.

Like the guidance computer, the Unified S-Band system was pretty innovative for its day — able to track, provide voice communications, receive television signals, and send commands to and monitor the health of the spacecraft via telemetry. The system operates on three frequencies, an uplink containing ranging code, voice and data. There are two downlinks, one providing ranging, voice, and telemetry, the other used for television and the playback of recorded data. All crammed into two hefty boxes totaling 29 kg.

So far, [Marc] has released part 9 of the series (for reference, the Apollo Guidance Computer took 27 parts plus 8 auxiliary videos). There seems to be even less documentation for this equipment than the AGC, although miraculously the guys keep uncovering more and more as things progress. Also random pieces of essential ground test hardware keep coming out of the woodwork. It’s a fascinating dive into not only the system itself, but the design and construction techniques of the era. Be sure to check out the series (part 1 is below the break) and follow along as they bring this system back to life. [Marc] is posting various documents related to the project on his website. And if you missed the AGC project, here’s the playlist of videos, and the team joined us for a Hackaday Chat back in 2020.

Continue reading “Apollo Comms Flight Hardware Deep Dive”

Reusable Booster Rockets, Asian Roundup

The Space Shuttle’s solid rocket boosters were reusable, although ultimately the overall system didn’t prove cheaper than expendable launches. But given the successes of the Falcon 9 program — booster B1051 completed its 11th mission last month — the idea of a rocket stage returning to the launch site and being reused isn’t such a crazy proposition anymore. It’s not surprising that other space agencies around the world are pursuing this technology.

Last year the India Space Research Organization (ISRO) announced plans for a reusable launcher program based on their GSLV Mark III rocket. The Japan Aerospace Exploratory Agency (JAXA) announced last Fall that it is beginning a reusable rocket project, in cooperation with various industries and universities in Japan. The South Korean space agency, Korea Aerospace Research Institute (KARI), was surprised in November when lawmakers announced a reusable rocket program that wasn’t requested in their 2022 budget. Not in Asia, but in December France’s ArianeGroup announced a reusable rocket program called Maïa.

Speaking of South Korea’s rocketry program, we wrote about the Nuri rocket in October which failed to reach orbit because of a problem in the third stage. Kari recently completed a review of all the data, and concluded the problem was with the anchors of the helium tanks which are located inside the oxidizer tank.

Apparently the changing buoyancy of the submerged tanks with altitude wasn’t completely accounted for in the design of the mounting brackets. When they ultimately failed, the resulting broken piping caused a LOX leak and the subsequent 46-second premature engine shutdown. The next scheduled launch in May 2022 will very likely be delayed.

 

Astronaut Food Is Light Years Beyond Tang And Freeze-Dried Ice Cream

When it comes down to it, we humans have two major concerns when venturing away from home for an extended period of time: what we’ll eat, and where we will sleep. Depending on the mode of travel, you might take some snacks along, or else rely on restaurants and/or the pantry of your possible hosts. Until the day we can reliably grow many types of food in space, or that Milliways, that five-star eatery at the end of the universe is operational, astronauts and other space-bound travelers will have to bring most of their food with them.

Cubes and Tubes

Space food has its roots in military rations, which in the United States were devised during the Revolutionary War. Both the variety and delivery methods of food have changed significantly since the beginning of the space program. While the menu may have at first been limited to tubes of nutrient-rich goo, bite-sized cubes and freeze-dried powdered beverages, the fare is more far-out these days. Astronauts on the ISS even enjoy tortillas, fresh fruits, and vegetables thanks to resupply missions, though they have to eat some of these types of foods quickly.

The average astronaut has also changed quite a bit, too. At first, they were all young and super-fit ex-military men, but nowadays they are more likely to be middle-aged science-y types and women. All three of these groups have different nutritional needs when faced with the rigors of living and working in space.

Continue reading “Astronaut Food Is Light Years Beyond Tang And Freeze-Dried Ice Cream”

Orbital Safety: The Challenges Of Surviving Space Junk

Hanging around in earth orbit is like walking into the middle of a Wild West gunfight — bullets are flying around everywhere, and even though none are purposefully aimed at you, one might have your name on it. Many of these bullets are artificial satellites that are actively controlled and monitored, but we also find dead satellites, remnants of satellites, discarded rocket stages, tools lost during spacewalks, and even flecks of paint and rust, much of it zipping around at multiple kilometers per second without any guidance.

While removing this space debris directly would be ideal, the reality is that any spacecraft and any spacesuit that has to spend time in orbit needs to be capable of sustaining at least some hits by space debris impacting it.

Orbital Mechanics

That it’s easy to create new debris should come as no surprise to anyone. What may take a bit more imagination is just how long it can take for this debris to make its way towards earth’s atmosphere, where it will uneventfully burn up. Everything in orbit is falling toward the earth, but its tangential velocity keeps it from hitting — like a marble spinning around the hole in a funnel. Drag from the planet’s atmosphere is the friction that eventually slows the object down, and where it orbits in the planet’s atmosphere determines how long this descent will take. Continue reading “Orbital Safety: The Challenges Of Surviving Space Junk”