Robotic arms – they’re useful, a key part of our modern manufacturing economy, and can also be charming under the right circumstances. But above all, they are prized for being able to undertake complex tasks repeatedly and in a highly precise manner. Delivering on all counts is DEXTER, an open-source 5-axis robotic arm with incredible precision.
DEXTER is built out of 3D printed parts, combined with off-the-shelf carbon fiber sections to add strength. Control is through five NEMA 17 stepper motors which are connected to harmonic drives to step the output down at a ratio of 52:1. Each motor is fitted with an optical encoder which provides feedback to control the end effector position.
Unlike many simpler projects, DEXTER doesn’t play in the paddling pool with 8-bit micros or even an ARM chip – an FPGA lends the brainpower to DEXTER’s operations. This gives DEXTER broad capabilities for configuration and expansion. Additionally, it allows plenty of horsepower for the development of features like training modes, where the robot is stepped manually through movements and they are recorded for performance later.
It’s a project that is both high performing and open-source, which is always nice to see. We look forward to seeing how this one develops further!