Motobrain: A Bluetooth Controlled PDU

motobrain

If you’ve ever considered modding your vehicle’s electrical system, [Josh Oster-Morris’s] Motobrain PDU (power distribution unit) might make life easier by providing precision control and protection for auxiliary 12V outputs in your car, bike, boat, etc. Once the Motobrain is paired to a phone over Bluetooth, a companion app displays real-time telemetry and lets you program up to 8 output channels.

Each of these 8 outputs can be directly controlled in the app, but the real power lies in the 4 programmable inputs. Here you can tie systems together and dictate exactly how one should respond to the other, e.g. detecting high-beams and disabling the auxiliary light bar you added. There’s even a “delayed on” option. Programming also has PWM capabilities, so flipping a switch could raise the brightness of some lights over 4 levels of intensity. If those lights are LEDs, the Motobrain can also provide constant current to specification. Each circuit can supposedly handle 15A continuous current and has a programmable circuit breaker, which would make fuses optional.

You can watch an overview video after the break to get a better idea of how it all works, but stop by [Josh’s] project blog to see all the features explained across multiple videos and blog posts as they are developed and tested.

Continue reading “Motobrain: A Bluetooth Controlled PDU”

Custom Car Keypad Entry

jeepKeyless

[EdsJunk] loves the outdoors and using his Jeep Wrangler to get him there, but hiding a key just to go for a swim makes him nervous. After a friend showed him how convenient it was to have keypad entry to his vehicle, [EdsJunk] decided it was time he built his own.

The build uses a spare waterproof keypad attached to an Arduino Micro. [EdsJunk] simplified things by cannibalizing his extra keyless entry keyfob; if the ‘duino receives the right code from the keypad, it presses the unlock button on the keyfob to grant access. [EdsJunk] admits that the Wrangler’s soft top is easy enough to get into, but explains that the goal of this project is to keep the alarm activated, which would presumably go off if someone tried to break in through the soft top. You can watch a video demo of the keypad access below. This is another great addition to the multitude of hacks he’s performed on one vehicle.

We do, however, hope that there’s some kind of lockout built into the code to prevent brute forcing: it should be easy enough to activate the car’s panic button after a set number of failed attempts. Car hacks are popular this summer: check out the Real Car Remote Control if you missed it.

Continue reading “Custom Car Keypad Entry”

Diesel Bike Build: Round 2

alexDieselBike02

[Alex] has been hard at work on his second vegetable-oil-powered diesel bike build. The last time we checked in, he was finishing off work on his Honda CB400. Unfortunately, he felt it wasn’t quite big enough to ride comfortably, and as most first builds go, it was burdened with its share of problems. Now he’s snagged a Yamaha XJ600 off eBay, cleaned it up and started the modifications. [Alex] extended the frame to accommodate a new engine, rebuilt the gearbox, and perhaps most daunting: turned down the pulleys with a vintage 1950’s lathe.

Now that [Alex’s] bike has passed the MOT inspections, he can enjoy cruising around while doing his part to save the environment. His build log details the process, and is packed with enough pictures to keep you busy for a few hours while it walks you through each step. You can watch the bike’s test-run video below. For you off-road types, check out the all-wheel drive motorcycle from last month.

Continue reading “Diesel Bike Build: Round 2”

Solar Power For Your Bike

After the headlight on his bike died, [Patrick] decided this was the best time to hack the remains and solve a few problems: namely a constantly drained battery from accidentally forgetting to turn the light off. He opted for a solar solution, as he already had both an Adafruit solar lithium charger and a Seeed Li-po Rider. [Patrick] picks the Adafruit board for its extra safety features like temperature sensing to prevent the cell from overheating.

The build uses 9 eBay-sourced 2V mini solar panels attached neatly on the bike’s mudflaps. Three groups of 3 panels in series provide the needed 6V into the Adafruit lithium board which safely charges a spare 900mAh Nokia phone battery from the junk drawer. [Patrick] admits this solar setup may be overkill. He decided to include a USB jack to keep his phone charged for some Google maps navigation. The Adafruit board does not step up to 5V, however, so [Patrick] tacks on a Mintyboost kit to kick the Lipo’s output up high enough to charge the phone.

Solar’s not the only alternative way to power your bike’s lights. Check out the RattleGen from earlier this year if you missed it.

A Real Car Remote Controlled With An Arduino… What Could Go Wrong?

[Gilad] tipped us about his latest project, where he adds plenty of pneumatics and electronics into his wife’s car to remote control it.

The brake/throttle pedals are actuated by pistons controlled by electronic valves, and a standard DC motor is in charge of turning the wheel. The Arduino code tells us that the valves will be opened as long as the remote up/down channel is above/under given values. The frame is based on Festo aluminium profiles and we’re not sure where the mains used for the DC/DC converters is coming from.  As the valves use 24V and the motor 12V, standard N-Mosfets and power relays are used for voltage conversion. The remote controller [Gilard] used is actually 20 years old, so the output signal of the receiver isn’t actually really clean.

We do hope to never see this car on the road….

Radar Detector Integrated With Dashboard Display Screens And Steering Wheel Controls

CAN Bus hacking is all the rage right now. This particular project uses an early development version of an Arduino compatible CAN bus tool to integrate radar detector control into a Mazda dashboard. This image shows the output as the Whistler Pro-3600 radar detector boots up. The self test demonstrates what you would see on the dashboard display if your speed is checked using any of a handful of technologies. But it’s not just the dash display that’s working. The steering wheel controls are also capable of affecting the radar detector so that it can always be hidden from sight.

With auto manufacturers adding more numerous and larger displays to our vehicles it’s refreshing to see someone come up with a hack that makes pushing our own info to those screens possible. The CANBus Triple is an Arduino compatible board which patches into the data bus found in all modern vehicles. To integrate the Whistler for this hack [TheDukeZip] prototyped the interface on a regular Arduino board, then moved it over to the CANBus Triple once he had it working. Check out the video after the break to see the setup in action.

Continue reading “Radar Detector Integrated With Dashboard Display Screens And Steering Wheel Controls”

Yet Another Self-Balancing Unicycle

No one has time to hone their balancing skills these days, and if building your own Segway doesn’t generate enough head-turning for you, then the self-balancing unicycle from the guys at [Scitech] should. Their build is chain-driven, using easy-to-find salvaged Razor scooter parts. Throw in a motor controller, 5DOF IMU and some batteries and it’s almost ready to burn up the sidewalks in hipster-tech style.

Some of the previous unicycle builds we’ve seen are a little on the bulky side, but the [Scitech] cycle aims for simplicity with its square tube steel framing and footrests. As always, unicycle builds like these take some effort on behalf of the rider: shifting your weight controls steering and throttle. The [Scitech] gang also discovered that it’s usually best when you don’t accidentally wire the motors up to the controller backwards. We recommend that you find a helmet and watch the video after the break.

Too-cool-for-unicycle hackers can build a dangerously fast e-skateboard instead.

Continue reading “Yet Another Self-Balancing Unicycle”